2025年福建省廈門市集美區杏東中學初三5月份考前模擬適應性聯合考試數學試題試卷含解析_第1頁
2025年福建省廈門市集美區杏東中學初三5月份考前模擬適應性聯合考試數學試題試卷含解析_第2頁
2025年福建省廈門市集美區杏東中學初三5月份考前模擬適應性聯合考試數學試題試卷含解析_第3頁
2025年福建省廈門市集美區杏東中學初三5月份考前模擬適應性聯合考試數學試題試卷含解析_第4頁
2025年福建省廈門市集美區杏東中學初三5月份考前模擬適應性聯合考試數學試題試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年福建省廈門市集美區杏東中學初三5月份考前模擬適應性聯合考試數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.圖中三視圖對應的正三棱柱是()A. B. C. D.2.據悉,超級磁力風力發電機可以大幅度提升風力發電效率,但其造價高昂,每座磁力風力發電機,其建造花費估計要5300萬美元,“5300萬”用科學記數法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1083.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數為()A.54° B.64° C.74° D.26°4.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關系是()A.相交B.內切C.外離D.內含5.-4的相反數是()A. B. C.4 D.-46.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.167.如圖,在中,,將繞點逆時針旋轉,使點落在線段上的點處,點落在點處,則兩點間的距離為()A. B. C. D.8.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.9.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或510.如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點,若函數y=(x>0)的圖象△ABC的邊有公共點,則k的取值范圍是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20二、填空題(共7小題,每小題3分,滿分21分)11.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.12.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內角的度數是______.13.二次函數y=(a-1)x2-x+a2-1

的圖象經過原點,則a的值為______.14.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數為_____.15.已知一組數據:3,3,4,5,5,則它的方差為____________16.已知數據x1,x2,…,xn的平均數是,則一組新數據x1+8,x2+8,…,xn+8的平均數是____.17.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.三、解答題(共7小題,滿分69分)18.(10分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數根.求m的取值范圍;若m為正整數,求此方程的根.19.(5分)如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.求證:四邊形OCED是矩形;若CE=1,DE=2,ABCD的面積是.20.(8分)如圖,在平面直角坐標系中,二次函數y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點B的坐標為(1,0),點C的坐標為(0,4);點D的坐標為(0,2),點P為二次函數圖象上的動點.(1)求二次函數的表達式;(2)當點P位于第二象限內二次函數的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由.21.(10分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數.22.(10分)已知關于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實數根,求實數m的取值范圍;(2)若方程兩實數根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數m的值.23.(12分)先化簡,再求值:÷,其中m是方程x2+2x-3=0的根.24.(14分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,從而求解【詳解】解:由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,于是可判定A選項正確.故選A.本題考查由三視圖判斷幾何體,掌握幾何體的三視圖是本題的解題關鍵.2、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5300萬=53000000=.故選C.在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).3、B【解析】

根據菱形的性質以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數.【詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.本題考查了菱形的性質和全等三角形的判定和性質,注意掌握菱形對邊平行以及對角線相互垂直的性質.4、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據圓心距與半徑之間的數量關系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關系.5、C【解析】

根據相反數的定義即可求解.【詳解】-4的相反數是4,故選C.【點晴】此題主要考查相反數,解題的關鍵是熟知相反數的定義.6、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.7、A【解析】

先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.8、B【解析】根據折疊前后對應角相等可知.

解:設∠ABE=x,

根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.9、D【解析】

分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.10、A【解析】若反比例函數與三角形交于A(4,5),則k=20;若反比例函數與三角形交于C(4,2),則k=8;若反比例函數與三角形交于B(1,5),則k=5.故.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、y=(x﹣1)2+【解析】

直接利用拋物線與坐標軸交點求法結合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.此題主要考查了拋物線與坐標軸交點求法以及二次函數的平移,正確得出平移方向和距離是解題關鍵.12、144°【解析】

根據多邊形內角和公式計算即可.【詳解】解:由題知,這是一個10邊形,根據多邊形內角和公式:每個內角等于.故答案為:144°.此題重點考察學生對多邊形內角和公式的應用,掌握計算公式是解題的關鍵.13、-1【解析】

將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數y=(a-1)x2-x+a2-1的圖象經過原點,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.本題考查了二次函數圖象上點的坐標特征,圖象過原點,可得出x=2時,y=2.14、72°【解析】

首先根據正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.本題考查的是正多邊形和圓,利用數形結合求解是解答此題的關鍵15、【解析】根據題意先求出這組數據的平均數是:(3+3+4+5+5)÷5=4,再根據方差公式求出這組數據的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.16、【解析】

根據數據x1,x2,…,xn的平均數為=(x1+x2+…+xn),即可求出數據x1+1,x2+1,…,xn+1的平均數.【詳解】數據x1+1,x2+1,…,xn+1的平均數=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.本題考查了平均數的概念,平均數是指在一組數據中所有數據之和再除以數據的個數.平均數是表示一組數據集中趨勢的量數,它是反映數據集中趨勢的一項指標.17、【解析】試題分析:因為OC=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點:1.解直角三角形、2.垂徑定理.三、解答題(共7小題,滿分69分)18、(1)且;(2),.【解析】

(1)根據一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;

(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【詳解】(1)∵.解得且.(2)∵為正整數,∴.∴原方程為.解得,.考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.19、(1)證明見解析;(2)1.【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內角為90度即可;(2)由菱形的對角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點睛】本題考查了矩形的判定與性質,菱形的性質,熟練掌握矩形的判定及性質、菱形的性質是解題的關鍵.20、(1)y=﹣x2﹣3x+4;(2)當時,S有最大值;(3)點P的橫坐標為﹣2或1或或.【解析】

(1)將代入,列方程組求出b、c的值即可;(2)連接PD,作軸交于點G,求出直線的解析式為,設,則,,,當時,S有最大值;(3)過點P作軸,設,則,,根據,列出關于x的方程,解之即可.【詳解】解:(1)將、代入,,∴二次函數的表達式;(2)連接,作軸交于點,如圖所示.在中,令y=0,得,∴直線AD的解析式為.設,則,,∴.,∴當時,S有最大值.(3)過點P作軸,設,則,,,即,當點P在y軸右側時,,,或,(舍去)或(舍去),當點P在y軸左側時,x<0,,或,(舍去),或(舍去),綜上所述,存在點F,使與互余點P的橫坐標為或或或.本題是二次函數,熟練掌握相似三角形的判定與性質、平行四邊形的性質以及二次函數圖象的性質等是解題的關鍵.21、∠DAC=20°.【解析】

根據角平分線的定義可得∠ABC=2∠ABE,再根據直角三角形兩銳角互余求出∠BAD,然后根據∠DAC=∠BAC﹣∠BAD計算即可得解.【詳解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC邊上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.本題考查了三角形的內角和定理,角平分線的定義,準確識圖理清圖中各角度之間的關系是解題的關鍵.22、(1)m≥﹣;(2)m=2.【解析】

(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據題意x1+x2=2m+3,x1x2=m2+2,因為x1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論