




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省東莞市東華中學初三聯合考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知關于x的不等式組至少有兩個整數解,且存在以3,a,7為邊的三角形,則a的整數解有()A.4個 B.5個 C.6個 D.7個2.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.143.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關系是()A.相交 B.相切 C.相離 D.不能確定4.tan60°的值是()A. B. C. D.5.如圖是二次函數y=ax2+bx+c(a≠0)圖象如圖所示,則下列結論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.46.如圖1,點P從△ABC的頂點A出發,沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.247.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環的面積是()A.無法求出 B.8 C.8 D.168.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)9.方程的解是()A. B. C. D.10.﹣6的倒數是()A.﹣16 B.111.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.1512.統計學校排球隊員的年齡,發現有12、13、14、15等四種年齡,統計結果如下表:年齡(歲)12131415人數(個)2468根據表中信息可以判斷該排球隊員年齡的平均數、眾數、中位數分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15二、填空題:(本大題共6個小題,每小題4分,共24分.)13.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.14.如圖,圓錐底面半徑為rcm,母線長為10cm,其側面展開圖是圓心角為216°的扇形,則r的值為.15.中國古代的數學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據題意,可得方程組為___.16.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.17.64的立方根是_______.18.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.2014年這種禮盒的進價是多少元/盒?若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?20.(6分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.21.(6分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.22.(8分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.23.(8分)某初級中學對畢業班學生三年來參加市級以上各項活動獲獎情況進行統計,七年級時有48人次獲獎,之后逐年增加,到九年級畢業時累計共有183人次獲獎,求這兩年中獲獎人次的平均年增長率.24.(10分)在星期一的第八節課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統計圖表.等級得分x(分)頻數(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統計圖中,求E等級對應扇形的圓心角α的度數;(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、丁)中,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.25.(10分)“鐵路建設助推經濟發展”,近年來我國政府十分重視鐵路建設.渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了120千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時.(1)渝利鐵路通車后,重慶到上海的列車設計運行里程是多少千米?(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應對突發事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.26.(12分)研究發現,拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發現,對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯距離;當時,稱點M為拋物線的關聯點.(1)在點,,,中,拋物線的關聯點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯點,則t的取值范圍是________.27.(12分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發,以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
依據不等式組至少有兩個整數解,即可得到a>5,再根據存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數解有4個,故選:A.此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.2、B【解析】試題分析:根據平行四邊形的性質可知AB=CD,AD∥BC,AD=BC,然后根據平行線的性質和角平分線的性質可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質和等腰三角形的性質,解題關鍵是把所求線段轉化為題目中已知的線段,根據等量代換可求解.3、A【解析】試題分析:根據圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關系是相交.故選A.考點:直線與圓的位置關系.4、A【解析】
根據特殊角三角函數值,可得答案.【詳解】tan60°=故選:A.本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.5、B【解析】
由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結論有2個.故選B.本題考查了圖象與二次函數系數之間的關系,會利用對稱軸的值求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.6、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數圖象,根據已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.7、D【解析】試題分析:設AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應用;2.切線的性質.8、B【解析】
根據三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關鍵.9、D【解析】
按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經檢驗x=4是原方程的解故選:D本題考查解分式方程,注意結果要檢驗.10、A【解析】解:﹣6的倒數是﹣1611、B【解析】
題目中沒有明確腰和底,故要分情況討論,再結合三角形的三邊關系分析即可.【詳解】當5為腰時,三邊長為5、5、10,而,此時無法構成三角形;當5為底時,三邊長為5、10、10,此時可以構成三角形,它的周長故選B.12、B【解析】
根據加權平均數、眾數、中位數的計算方法求解即可.【詳解】,15出現了8次,出現的次數最多,故眾數是15,從小到大排列后,排在10、11兩個位置的數是14,14,故中位數是14.故選B.本題考查了平均數、眾數與中位數的意義.數據x1、x2、……、xn的加權平均數:(其中w1、w2、……、wn分別為x1、x2、……、xn的權數).一組數據中出現次數最多的數據叫做眾數.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(或最中間兩個數的平均數),叫做這組數據的中位數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、210°【解析】
根據三角形內角和定理得到∠B=45°,∠E=60°,根據三角形的外角的性質計算即可.【詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.本題考查的是三角形的外角的性質、三角形內角和定理,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.14、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點】圓錐的計算.15、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.16、B【解析】
過P點作PE⊥BP,垂足為P,交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.17、4.【解析】
根據立方根的定義即可求解.【詳解】∵43=64,∴64的立方根是4故答案為4此題主要考查立方根的定義,解題的關鍵是熟知立方根的定義.18、4m【解析】
設路燈的高度為x(m),根據題意可得△BEF∽△BAD,再利用相似三角形的對應邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關于x的一元一次方程,然后求解方程即可.【詳解】設路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)35元/盒;(2)20%.【解析】
試題分析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據2014年花3500元與2016年花2400元購進的禮盒數量相同,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設年增長率為m,根據數量=總價÷單價求出2014年的購進數量,再根據2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關于m的一元二次方程,解之即可得出結論.試題解析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據題意得:,解得:x=35,經檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設年增長率為m,2014年的銷售數量為3500÷35=100(盒).根據題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點:一元二次方程的應用;分式方程的應用;增長率問題.20、11【解析】
將x=2代入方程找出關于m的一元一次方程,解一元一次方程即可得出m的值,將m的值代入原方程解方程找出方程的解,再根據等腰三角形的性質結合三角形的三邊關系即可得出三角形的三條邊,根據三角形的周長公式即可得出結論.【詳解】將x=2代入方程,得:1﹣1m+3m=0,解得:m=1.當m=1時,原方程為x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三邊為6、6、2,∴此等腰三角形的周長C=6+6+2=11.考點:根與系數的關系;一元二次方程的解;等腰三角形的性質21、(1)見解析;(2)①3;②1.【解析】
(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質即可得出DE;②由等腰三角形的性質,得到∠ODA=∠A=1°,于是∠DOC=90°然后根據有一組鄰邊相等的矩形是正方形,即可得到結論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.本題考查了圓的切線性質、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.22、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.23、25%【解析】
首先設這兩年中獲獎人次的平均年增長率為x,則可得八年級的獲獎人數為48(1+x),九年級的獲獎人數為48(1+x)2;故根據題意可得48(1+x)2=183,即可求得x的值,即可求解本題.【詳解】設這兩年中獲獎人次的平均年增長率為x,根據題意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合題意,舍去).答:這兩年中獲獎人次的年平均年增長率為25%24、(1)80,12,28;(2)36°;(3)140人;(4)【解析】
(1)用D組的頻數除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出恰好抽到甲和乙的結果數,然后根據概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數共有140人;(4)畫樹狀圖如下:共12種等可能的結果數,其中恰好抽到甲和乙的結果數為2,所以恰好抽到甲和乙的概率=.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.也考查了統計圖.25、(1)1600千米;(2)1【解析】試題分析:(1)利用“從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了l20千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時”,分別得出等式組成方程組求出即可;
(2)根據題意得出方程(80+120)(1-m%)(8+m%)=1600,進而解方程求出即可.試題解析:(1)設原時速為xkm/h,通車后里程為ykm,則有:,解得:.答:渝利鐵路通車后,重慶到上海的列車設計運行里程是1600千米;(2)由題意可得出:(80+120)(1﹣m%)(8+m%)=1600,解得:m1=1,m2=0(不合題意舍去),答:m的值為1.26、(1)(2)①②【解析】【分析】(1)根據關聯點的定義逐一進行判斷即可得;(2))①當時,,,,,可以確定此時矩形上的所有點都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進行討論即可得.【詳解】(1),x=2時,y==1,此時P(2,1),則d=1+2=3,符合定義,是關聯點;,x=1時,y==,此時P(1,),則d=+=3,符合定義,是關聯點;,x=4時,y==4,此時P(4,4),則d=1+=6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 火鍋店創業全攻略
- 生鮮店陳列管理教程
- 鐵嶺師范高等專科學校《數字剪輯創作》2023-2024學年第二學期期末試卷
- 蘇州健雄職業技術學院《人力資源管理綜合實訓》2023-2024學年第二學期期末試卷
- 2025至2031年中國流化造粒包衣干燥機行業投資前景及策略咨詢研究報告
- 永州職業技術學院《數據庫課程設計實踐》2023-2024學年第二學期期末試卷
- 漳州理工職業學院《現代數控機床及控制技術》2023-2024學年第二學期期末試卷
- 寧夏體育職業學院《人文經典閱讀實踐(四)》2023-2024學年第二學期期末試卷
- 新型破碎路面施工方案
- 遼寧大學《編排設計》2023-2024學年第二學期期末試卷
- 2025年國家糧食和物資儲備局垂直管理系事業單位招聘筆試參考題庫附帶答案詳解
- 《住院患者身體約束的護理》團體標準解讀課件
- 2023-2024學年天津市部分區八年級(下)期中數學試卷(含解析)
- 醫院侵害未成年人案件強制報告制度培訓課件
- 自卸車整車裝配檢驗規范-ok
- (完整版)詳細化學物質及其CAS注冊號清單
- 科研與臨床ppt課件
- 科技企業孵化器運營方案
- 火力發電廠電氣主接線課程設計
- 吸入裝置正確使用方法調查表
- 三角廣告牌拆卸方案
評論
0/150
提交評論