




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ArtificialIntelligenceandProductivityinEurope
FlorianMisch,BenPark,CarloPizzinelliandGalenSher
WP/25/67
IMFWorkingPapersdescriberesearchin
progressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.
TheviewsexpressedinIMFWorkingPapersare
thoseoftheauthor(s)anddonotnecessarily
representtheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
2025
APR
NATn
·
ARY
*Correspondingauthor.
**WethankSimonBunel,EraDabla-Norris,RomainDuvalandDavidKollforexcellentcomments.MahikaGandhiprovidedexcellentresearchassistance.
?2025InternationalMonetaryFundWP/25/67
IMFWorkingPaper
EuropeanDepartment
ArtificialIntelligenceandProductivityinEurope
PreparedbyFlorianMisch*,BenPark,CarloPizzinelliandGalenSher**
AuthorizedfordistributionbyStephanDanningerandKristinaKostial
Month2025
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicit
commentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseofthe
author(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:ThediscussiononArtificialIntelligence(AI)oftencentersarounditsimpactonproductivity,butmacroeconomicevidenceforEuroperemainsscarce.UsingtheAcemoglu(2024)approachwesimulatethemedium-termimpactofAIadoptionontotalfactorproductivityfor31Europeancountries.Wecompilemanyscenariosbypoolingevidenceonwhichtaskswillbeautomatableinthenearterm,usingreduced-form
regressionstopredictAIadoptionacrossEurope,andconsideringrelevantregulationthatrestrictsAIuse
heterogeneouslyacrosstasks,occupationsandsectors.Wefindthatthemedium-termproductivitygainsforEuropeasawholearelikelytobemodest,ataround1percentcumulativelyoverfiveyears.While
economciallystillmoderate,thesegainsarestilllargerthanestimatesbyAcemoglu(2024)fortheUS.Theyvarywidelyacrossscenariosandcountriesandaresustantiallylargerincountrieswithhigherincomes.
Furthermore,weshowthatnationalandEUregulationsaroundoccupation-levelrequirements,AIsafety,anddataprivacycombinedcouldreduceEurope’sproductivitygainsbyover30percentifAIexposurewere50
percentlowerintasks,occupationsandsectorsaffectedbyregulation.
RECOMMENDEDCITATION:[Misch,F.,Park,B.,Pizzinelli,C.andSher,G.(2024).ArtificialIntelligenceandProductivityinEurope.IMFWorkingPaperWP/25/67.
JELClassificationNumbers:
E24,J24,O30,O47
Keywords:
ArtificialIntelligence;Productivity;Technology;Regulation
Author’sE-MailAddress:
FMisch@;
HPark2@;
CPizzinelli@;
GSher@
WORKINGPAPERS
ArtificialIntelligenceandProductivityinEurope
PreparedbyFlorianMisch
1,
BenPark,CarloPizzinelliandGalenShe
r2
1Correspondingauthor.
2MahikaGandhiprovidedexcellentresearchassistance.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND2
Contents
1.Introduction 3
2.StylizedFacts 6
3.Methodology 6
4.Results 8
4.1VariationinMedium-termProductivityGains 8
4.2PreferredScenario 12
4.3TheRoleofRegulation 15
5.ConclusionsandPolicyImplications 16
Appendix1:SampleandCountry-SpecificData 18
Appendix2:AIExposureofTasksandOccupations 19
Appendix3:AIAdoptionRate 22
Appendix4:LaborCostSavingsfromAI 28
Appendix5:NationalOccupationRegulation 29
Appendix6:EUAIAct 30
Appendix7:DataPrivacyLaws 31
References 32
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND3
1.Introduction
Artificialintelligence(AI)isoftenseenasageneral-purposetechnologythathasthepotentialtotransformtheeconomyandspurbroad-basedeconomicgrowth,akintothearrivalofelectricityandpersonalcomputers.
Muchofthedebateonitslikelyimpactthusfocusesonitseffectonproductivity.InEurope,thisquestionis
especiallytopicalgivenlacklusterproductivitygrowthoverrecentdecades,whichresultedinalarge
productivitygapvis-à-vistheUS(IMF,2024).Moreover,thereisawidespreadviewthattheregionisfallingbehindtheUSandChinainAIdevelopmentandadoption,notleastbecauseofitsmorestringentregulatoryenvironment(e.g.,TheEconomist,2023).Theobjectiveofthispaperistoprovideestimatesofthesizeof
effectsofAIontotalfactorproductivity(TFP)acrossEuropeancountriesoverthemediumtermandexamineanyimpedingeffectsofregulationinEurope.
MicroeconomicstudiessuggestlargeproductivitygainsfromdifferenttypesofAIforspecificoccupations.
Theseestimates,whichinmostcasesarebasedonrandomizedtrialswherethetreatmentgroupisgiven
accesstoAItools,rangefrom14%forlow-skilledtaxidriverstoover50%forsoftwareengineers;see
Appendix4forasummary.Firm-levelstudiesontheeffectsofadoptionofAItechnologiesotherthan
generativeAIfindsmallerbutstillsignificantproductivitygains(seeComunaleandManera,2024,and
Filippuccietal.,2024aforsurveys).AseparatestrandoftheliteraturelooksattheimpactofAIonemployment.Cazzanigaetal.(2024),forinstance,notethatalargeshareofjobsgloballyislikelytobeaffectedbyAI,
particularlyinadvancedeconomies,andthatAIwillsubstituteratherthancomplementhumanlaborinmanyjobs.UsingdatafromtheUS,Bonfigliolietal.(2025)andHuang(2024)showthathigherAIadoptionis
associatedwithfallsintheemployment-to-populationratios.AseparatestrandoftheliteratureexaminesmacroeconomicpoliciestobroadenthegainsfromAI;seeBrolloetal.(2024).
Theextenttowhichthesemicro-levelproductivitygainsandpossibleemploymenteffectsareassociatedwithaggregateproductivitygainsandgrowth,however,remainsunclear.Studiesexaminingthemedium-term
macroeconomiceffectofAIshowasubstantiallywiderrangeofestimates.McKinsey(2023)andGoldman
Sachs(Hatziusetal.,2023)envisioncumulativeGDPgainsofabove35percentforadvancedeconomiesand7percentgloballyovera10-yearperiod,respectively.Commissiondel’IntelligenceArtificielle(2024)infers
potentialgrowthimpactsfromAIofupto1.3annuallybydrawingparallelstotheeffectsofelectricityand
InformationandCommunicationtechnologies.Similarly,IMF(2024)andCazzanigaetal.(2024)estimate
annualgrowthimpactsofupto0.8percentagepointsbasedonlaborreallocationandchangesinthecapitalsharecomparabletothoseobservedforautomationinthepast.
Bycontrast,Acemoglu(2024)doesnottakeintoaccountanypotentiallonger-termtransformationaleffectsofAIandthereforeestimatesmuchmoremodestTFPgainsoflessthan0.7percentcumulativelyover10yearswhichhereferstoas‘mediumterm’.Heusesarigorousframeworkthatquantifiesthegainsbottom-upusingmeasuresoftheAIexposureofindividualtasksforeachoccupation.AghionandBunel(2024)showthatusingalternativeassumptionswithinAcemoglu’s(2024)frameworkcan10-foldtheestimatedproductivitygainsfor
theUS.
EvidenceconsideringEurope-specificfactorsandcross-countryheterogeneitywithintheregionremains
relativelyscarce.Bergeaud(2024)simulatesproductivitygainsfromAIfortheeuroareausingtheAcemoglu(2024)framework,combiningsomeoftheoriginalpaper’sparametervalueswithownassumptionsand
estimatestogenerateafewalternativescenarios.Hefindscumulativeproductivitygainsof2.9percentforthe
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND4
euroareainhiscentralscenario,whilehiscountry-specificresultsrangefromaround1.5inIrelandto3.3in
Belgium.Filippuccietal.(2024b)extendtheAcemoglu(2024)frameworkbymoreexplicitlymodellingsectoralspilloversandpresenttheproductivitygainsforallG7countrieswhileassumingdifferentadoptionrates.TheestimatedgainsarealsosignificantlyhigherthantheAcemoglu(2024)resultsformostcountriesand
scenarios.
Ourstudyisbroaderinscopeintermsofcountrycoverage,numberofscenariosandconsiderationofthe
effectsofregulation,andituseseconometrically-groundedparameterestimates.Weinvestigatecross-countryvariationfor31EuropeancountriesbothintermsofthemagnitudeandtheuncertaintyoftheproductivitygainsmoresystematicallybyallowingtheratesofAIadoptiontovaryacrosscountriesaccordingtotheireconomic
characteristics.Tothisend,wealsouseAcemoglu’s(2024)frameworktoestimatethemedium-term
productivitygainsfromAIinEurope(whichweinterprettobe5years,giventhemodelcharacteristicsandourassumptions)
.1
First,wequantifytheuncertaintyaroundtheimpactofAIonTFP.Ratherthanmakingourownassumptions,wecombineacomprehensivesetoftheavailableestimatesofAIexposureofindividualtasks,delivering44
scenarios.Foreachscenario,wecalibrateestimatesofAIadoptionbySvanbergetal.(2024),asusedin
Acemoglu(2024),tospecificcountriesandsectorsbasedonregressionevidenceofthedriversofAIadoptioninEurope.WagelevelsturnouttobethemaindriverofAIadoption,ratherthancapitalcosts,industry
concentration,digitalization,orhumancapital.Thisallowsustotakeintoaccounthowdifferencesinwage
levelsandothersectoralandcountry-levelfactorsaffectAIadoptionandshapecross-countryvariationoftheproductivitygains.
Second,weexaminetheroleofregulationinreducingproductivitygainsofAIwhichisoneareaofpolicythatisoftendiscussedwhenitcomestoAI;seeforexampleBradford(2024)forabroaderdiscussion.Survey
evidencefromGermanysuggeststhatwhilefirmsseemanybarrierstoAIadoption,regulationisseenasmostimportant(Wintergerst,2024).Tothisend,weconsiderregulationwhichcouldplausiblyhavelargeeffectson
AIadoption:licensingandtrainingrequirementsforspecificoccupationsatthenationallevel,dataprivacylaws,andtheEUAIAct
.2
Wethenidentifythetasks,occupationsandsectorswherethisregulationcouldundermineAIadoptionandassumethatregulationhalvesAIcapabilities,strikingareasonablemiddlegroundbetween
assumingthatregulationcompletelypreventsAIuseandthatregulationhasnoimpact.
Weshowthatinourpreferredscenario,whichisbasedonwhatwethinkarethemostplausibleassumptionsonAIoccupationalexposureandadoptionratesinEuropeancountries,theEurope-wideeffectsaremodestataround1.1percentcumulativelyoverthemediumterm,whichexceedsAcemoglu’sestimatesfortheUSby
almost60percent.ThesedifferencesaredrivenalmostentirelybymoreoptimisticassumptionsofAI
capabilitieswhichwethinkarejustifiedinlightofarecentrefereedpublicationwhichweexplainbelow.
However,thereissignificantheterogeneityacrosscountries.EstimatedTFPgainsinhigher-incomecountriestendtobemuchlargerthanthoseinlower-incomeeconomiesinlinewithfindingsbyCeruttietal.(2025),due
1IncontrasttoAcemoglu(2024)whoconsidersa10-yearperiod,weassumethatthesimulatedproductivitygainsrefertoa5-yearhorizonfortworeasons.First,theframeworkbyAcemoglu(2024)doesnotcaptureanylarge-scaletransformationaleffects
whichwethinkcouldindeedariseoverperiodsexceeding5years.Second,weassumethatAIcapabilitiesandtheAIadoptionrate(i.e.,theproportionoftasksforwhichitwillbeprofitabletouseAI)willremainconstantovertime.Over10years,botharemorelikelytochange.
2TheEUAIActisakeyAIsafetylawwhichcapsthecapacityofAIsystemsandincreasesthecostofusingAIinadefinedlistofhigh-risksystems.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND5
toboththeirlargershareofvalueaddedinindustriesthathavegreaterAIexposure(e.g.,financialservices)andtheirhigherwagelevels—whichprovidegreaterincentivesforlabor-savingorlabor-augmentingAI
adoption.
Moreover,inhigherincome-countries,therearemuchlargerupsiderisksfromAI.Forexample,inourpreferredscenario,thegainsinLuxembourgcouldbe2percentcumulatively,almosttwicetheEuropeanaverage,and
morethan4timeslargerthanthoseinRomania.ThisisduetothecompositionoftheLuxembourgish
economy,withmorevalueaddedinsectorslikefinancialserviceswithhigherAIexposure,anddueto
Luxembourg’shigherwages,whichgiveemployersthereagreaterincentivetoadoptAI.Inaddition,
productivitygainsinLuxembourgcouldbemorethantwiceashighifAIturnsouttobemorecapablethaninthe‘preferred’scenario,pointingtolargerupsiderisksaswell.
Wealsofindthatthecombinedadverseeffectsofnationaloccupation-levelregulation,theEUAIActanddataprivacylawsonproductivitycouldbesignificant,withtheformertwohavingthelargesteffects.Occupational
restrictionsareoftenoverlookedindebatesonAIbutcouldsubstantiallyreducetheproductivitygainsfromAI.Bycontrast,dataprivacylawswidelyaffectsomeindustrieswithhighAIexposure,suchastheITandfinancialservicessectors,buttheirproductivity-inhibitingeffectissomewhatsmaller.
Ourresultscaninformongoingpolicydebates.Ontheonehand,theysuggestthatoverthemediumterm,AIisnotasilverbullettosignificantlyboostsluggishproductivitygrowthinEurope,ortoclosetheproductivitygaptotheUnitedStates.Moreover,AIcouldslowtherateofincomeconvergenceamongEuropeancountries
becausethegainsfromAItendtobelargerinmoreadvancedeconomies.Ontheotherhand,ourresultshelpinformthepotentialtrade-offsbetweenthebenefitsofregulationsincludingrelatedtoprivacyandsafety,andmaximizingtheproductivitygainsfromAI,whilenotingthatourstudyisnotacomprehensivecost-benefit
analysisoftheseregulations.
Thispaperisorganizedasfollows.Section2presentsstylizedfactsonthediffusionandadoptionofAIto
motivatetheanalysisandthefocusonmedium-termeffects.Section3providesasummaryoftheAcemoglu
(2024)modelanddiscusseshowwecalibratesomeofitskeyparameterstotheEuropeancontext,consideringarangeofalternativescenarios.Section4presentstheresultsandtheanalysisofregulations.Section5
concludes.
INTERNATIONALMONETARYFUND6
2.StylizedFacts
Figure1.SpreadofPastInnovations
(Yearstoreach100millionusers/units)
100
M
M
M
M
M
M
M
M
M
M
M
0135791113151719212325···80YearstoReach100MillionUsers/Unit
NumberofUsers
90
80
70
60
50
40
30
20
10
0
GenAI
TV
Telephone
InternetCableTV
ComputersCellphone
Source:CHATdatabase;IMFstaffcomputation.
Note:TheGenAIandInternetlinereflectstheusercount.ThefiguresforComputers,TV,andCellphonerepresentthenumberofunits.CableTVandTelephoneindicatethenumberof
connections.
ThefastspeedofdiffusionofgenerativeAI(genAI),asubsetofthebroadsetoftechnologiesthatfall
underthedefinitionofAI,overthelasttwoyears
explainsinparttherecentinterestinandpublic
debatesontheeffectsofAImorebroadly.
Comparedtopastinnovations,ittookonlyafew
monthsforgenAItoreach100millionusers
(measuredbytheuserbaseofOpenAI’sChatGPTwhichwasthefirstwidelyavailableandaccessiblegenAIapplication).Bycontrast,ittookyears(and
sometimesdecades)forothergeneral-purpose
technologiestoreachthesamenumberofusers.
Eventhoughthesedifferencesmaybemainly
drivenbytheverylowaccesscostofgenAI
technologiesthroughsmartphonesandpersonal
computers,thishistoricallyunprecedentedspeedofadoptionpointstothepotentialforAItobe
applicabletoawiderangeoftasks.However,aswediscussbelow,thesheernumberofindividualusersneitherimpliesthatAIisbeingemployedtoawide
rangeoftasksnorisitsynonymousforbroaderAIadoptionbyfirms.
3.Methodology
TosimulatetheeffectsofAIonproductivity,thispaperusesthemodelfromAcemoglu(2024),whichinturnisbasedonAcemogluandRestrepo(2018,2019,2022).Inthemodel,theproductionofauniquefinalgood
requiresafixedsetoftaskstobeperformed,andinturn,thesetaskscanbeproducedwitheithercapitalor
labor.Thisframeworkserveswelltoexaminethemedium-termeffectsofAI,interpretedasthegrowthinoutputandTFPoriginatingfromsmallchangesinproductivityandinthemixoflaborandcapitalinputs,butwithout
fundamentallong-runchangesinthestructureoftheeconomy(i.e.,itssectoralcompositionandtasks).
Acemoglu(2024)includestwochannelsforAI-basedproductivitygains:automationandtaskcomplementarity.Theformerentailsasubstitutionofworkersintheperformanceofindividualtaskswithinanoccupation,
decreasingtheoverallneedforhumanlabor.Thelatterreferstopartialautomationoftaskssothatthemarginallaborproductivityincreasesincomplementarytasksperformedbyhumans.
Acemoglu(2024)thenappliesHulten’stheorem(Hulten,1978),whichshowshowmicro-level,non-
transformationalproductivityimprovementsinindividualoccupationstranslateintomacrochangesand
aggregatedproductivitygrowthincompetitiveeconomieswithconstantreturnstoscale.SinceAcemoglu’s
focusisonsmallchangesintechnologyandthecompetitiveequilibriumisefficient,theimpactofall
reallocationsoffactorsacrosstasksandindirecteffectsviapricesareofsecondaryorderandthereforesmallenoughtobeignoredincomputingtheproductivityandGDPgainsduetoAI.Thisalsoimpliesthatthemodel
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND7
isnotsuitableforestimatinganypotentiallylargetransformationalandlonger-termeffects,suchasthecreationofnewindustriesoranaccelerationintherateofscientificdiscoveries.
EstimatingtheproductivitygainsofAIadoptionintheAcemoglu(2024)modelamountstocalibratingthreekeyparameters.ThefirstrequiredinputconsistsofameasureoftheexposuretoAIofdifferentoccupations,
essentiallyreflectingassumptionsaboutAIcapabilitiesandthepotentialscopeofAIapplications.Importantly,forthepurposeofestimatingproductivitygains,exposurecanrefertobothautomationandtask
complementarities
.3
Usingaversionofthetask-basedoccupationalexposuremeasureconstructedby
Eloundouetal.(2024),Acemoglu(2024)calculatesthatthewagebill-weightedshareofexposedtasksinthe
U.S.economyis19.9percent,meaningthatAIhasthecapabilityofperformingaround20percentoftasksin
theU.S.economy(whenwagebillweightsareusedtoproxytherelativeimportanceoftasksandoccupations).
ThesecondparameterofinterestistheAIadoptionrate,i.e.,theshareofAI-exposedtaskswherethebenefitsofusingAIexceedthecosts,thusmakingAIadoptionprofitable.Intuitively,theremaybetasksthatAIcan
performbutwhereitsapplicationmaybetoocostlyrelativetothepriceoflaborinthesamejob.Hence,therawexposuremeasureofanoccupationshouldbecombinedwithanestimateoftheeconomicfeasibilityof
adoption.Acemoglu(2024)drawsfromthecostingestimatesofSvanbergetal.(2024)toassumethatthebenefitsofusingAIexceedthecostsfor23percentofAI-exposedtasks.
Finally,translatingtheapplicationofAIintoproductivitygainsrequiresanestimateofthesavingsintermsof
laborcoststhatAIprovideswhenproducingaunitofoutput.Acemoglu(2024)usesanaverageofthree
microeconomicproductivityestimatestocalibratetheassumptionthattasksautomatedbyAIreducelabor
costsby27%.Theselaborcostsavingstranslateinto15%total(laborandcapital)costsavings,giventhat
laborcostsaccountfor53percentofoutput.Multiplyingthesethreekeyparameters(19.9%,23%,and15%),
Acemoglu(2024)estimatesa0.71%cumulativemedium-termincreaseintotalfactorproductivityfortheUS.IncontrasttoAcemoglu(2024)whoconsidersthemediumtermtobe10years,weassumethatthecumulative
medium-termgainsariseover5years.
Weapplythesamemethodologyto31Europeancountries(seeAppendix1forlistofcountries).Foreach
country,weobtainthefirstkeyparameter—theshareofAI-exposedtasksinindustry-specificvalueadded—byweightingoccupation-levelexposuresbyeachoccupation’swagebillwithinanindustry(seeAppendix2fortheAIexposureestimatesfromtheliteratureweuse).Toobtainthesecondkeyparameter—theAIadoptionrate—weestimatethehistoricalrelationshipbetweenAIadoptionandcountries’andsectors’economic
characteristics(e.g.,laborandcapitalcosts)inEurope.Thisgivestheshareoftasksineachcountry-industry
pairforwhichitisprofitabletoapplyAI(seeAppendix3).Wecalibratethethirdkeyparameter(costsavings)inthesamewayasAcemoglu(2024).Finally,wecalculateproductivitygainastheproductofthesethreekey
parameters(seeAppendix1fordetailsondatausedforweightingandlaborshares).
3Thedistinctionbetweenautomationandcomplementarity,however,wouldberelevantforexaminingtheimpactofadoptiononemploymentandlaborproductivity,whichweleaveforfutureresearch.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND8
4.Results
4.1VariationinMedium-termProductivityGains
Wepresenttheresultsinseveralstages.First,wecompareproductivitygainsinEuropetotheestimatesby
Acemoglu(2024)fortheUS.Second,weshowhowalternativeassumptionsofAIcapabilitiesandAIadoptionaffecttheproductivitygainsacrossthecountriesinoursample.Finally,wecombineallassumptionstoarrivetoaplausiblerangeofestimatesforeachcountry.
First,weapplythesamemethodologyasinAcemoglu(2024)toEuropeinordertocompareourestimateswiththeonesforAcemoglu(2024)fortheUS.Inparticular,wecalculatetheproductivitygainsforEuropean
countriesandEuropeasawhole,usingthesamemeasureofoccupation-levelAIexposure,AIadoptionrate,
andlaborcostsavingsfromAIasintheoriginalAcemoglu(2024)paper.Thisparametrization,henceforth
referredtoasthe‘Acemoglu(2024)baseline’,allowsustoexaminehowdifferencesinthesectoralcompositionandwagestructuretranslateintodifferencesintheproductivitygainsfromAIbetweentheUSandEuropean
countries,giventhattherearenootherdifferencesbetweenAcemoglu’sresultandourresultsforEurope.
Figure2showsthat,basedondifferencesinthesectoralcomposition,theaverageproductivitygainsinEuropearesomewhatlargerthanintheUS,butnotbymuch:theyamounttocloseto0.8percentinEurope,
cumulativelyoverthemediumterm,comparedtoaround0.7inAcemoglu(2024)fortheUS.However,thereissubstantialcross-countryvariation,rangingfromaround0.5percentinRomaniatocloseto1percentin
Luxembourg.Broadly,higher-incomecountrieshavelargergains,aresultdrivenbythehigherprevalenceofwhite-collarservicesincludingforinstancefinancialservices,whichtendtobemoreexposedtoAI.
IMFWORKINGPAPERSArtificialIntelligenceandProductivityinEurope
INTERNATIONALMONETARYFUND9
Figure2.ProductivitygainsinEuropeandtheUScompared
Sources:Eurostat,EULFS,EUSILC,andIMFstaffcalculations.
Note:TheblackandredlinesrepresenttheaverageTFPgainforthe31EuropeancountriesinoursampleandfortheUSasestimatedbyAcemoglu(2024),respectively.
Second,wequantifytheuncertaintyaroundtheAcemoglu(2024)baselineresultspresentedinFigure2usingacomprehensivesetofalternativescenariosaboutAIcapabilities(AItask-levelexposuremeasures)
.4
WethusrepeattheexerciseconsideringvariousalternativeestimatesonAIexposure.Appendix2providesalistofAI
exposureestimatesandbriefdescriptionsoftheirmainmethodologicaldifferences.Forinstance,some
computeexposureforspecifictasksandthenconsidereachoccupationasabundleoftasks(Eloundouetal.,2024,Gmyreketal.,2023,Webb,2019),whileothersfocusontheoverlapbetweenAIapplicationandhumanskills(Feltenetal.,2021).Beyondthemechanicalmeaningoftestingthesensitivityoftheresultstothese
assumptions,exploringalternativemeasuresofexposurethusalsoreflectstheconsiderableuncertaintyaroundhowindividualtasksandoccupationswillbeaffectedbyAI.Figure3showsthatwhilemoreconservative
assumptionsmute
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吵架協(xié)議書(shū)紅包范本
- 品牌生產(chǎn)合同協(xié)議
- 品類達(dá)人合同協(xié)議
- 快遞員帶貨合同協(xié)議
- 商業(yè)房產(chǎn)證合同協(xié)議
- 員工勞動(dòng)協(xié)議書(shū)范本
- 商場(chǎng)改衣坊合同協(xié)議
- 民宿投資入股合同協(xié)議
- 商場(chǎng)員工聘用合同協(xié)議
- 2025年管理信息系統(tǒng)應(yīng)用軟件工程合同
- 專利代理師筆試考試題庫(kù)帶答案
- 2025-2030中國(guó)重型商用車(chē)空氣彈簧行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 2025年統(tǒng)計(jì)學(xué)期末考試題庫(kù):綜合案例分析題模擬試卷
- 祈使句(含答案解析)七年級(jí)英語(yǔ)下冊(cè)單元語(yǔ)法精講精練(人教版)
- 2025-2030中國(guó)微控制器(MCU)市場(chǎng)競(jìng)爭(zhēng)格局與投資建設(shè)深度解析研究報(bào)告
- 《中英飲食文化差異》課件
- 2024年韶關(guān)市始興縣事業(yè)單位招聘工作人員筆試真題
- 2025-2030中國(guó)風(fēng)電齒輪箱行業(yè)投資策略與可持續(xù)發(fā)展建議研究報(bào)告
- 盡職調(diào)查專項(xiàng)法律服務(wù)合同
- 戶內(nèi)穿線合同協(xié)議
- 第18課《井岡翠竹》課件-統(tǒng)編版語(yǔ)文七年級(jí)下冊(cè)
評(píng)論
0/150
提交評(píng)論