山東省濰坊市臨朐一中2024-2025學年高三下學期第二次診斷性測驗數學試題含解析_第1頁
山東省濰坊市臨朐一中2024-2025學年高三下學期第二次診斷性測驗數學試題含解析_第2頁
山東省濰坊市臨朐一中2024-2025學年高三下學期第二次診斷性測驗數學試題含解析_第3頁
山東省濰坊市臨朐一中2024-2025學年高三下學期第二次診斷性測驗數學試題含解析_第4頁
山東省濰坊市臨朐一中2024-2025學年高三下學期第二次診斷性測驗數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濰坊市臨朐一中2024-2025學年高三下學期第二次診斷性測驗數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}2.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切3.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.4.在等差數列中,若,則()A.8 B.12 C.14 D.105.已知角的終邊與單位圓交于點,則等于()A. B. C. D.6.若直線經過拋物線的焦點,則()A. B. C.2 D.7.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件8.已知向量,則向量在向量方向上的投影為()A. B. C. D.9.函數f(x)=2x-3A.[32C.[3210.若,則的虛部是()A. B. C. D.11.函數在的圖像大致為A. B. C. D.12.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在直線l與函數及的圖象都相切,則實數的最小值為___________.14.函數在區間內有且僅有兩個零點,則實數的取值范圍是_____.15.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.16.已知,,且,則最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:18.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.19.(12分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.20.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數的取值范圍.21.(12分)某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設,且.(i)試將表示為的函數,并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.22.(10分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)(2)如果隨機抽取的7名同學的數學,物理成績(單位:分)對應如下表:學生序號1234567數學成績60657075858790物理成績70778085908693①若規定85分以上(包括85分)為優秀,從這7名同學中抽取3名同學,記3名同學中數學和物理成績均為優秀的人數為,求的分布列和數學期望;②根據上表數據,求物理成績關于數學成績的線性回歸方程(系數精確到0.01);若班上某位同學的數學成績為96分,預測該同學的物理成績為多少分?附:線性回歸方程,其中,.7683812526

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.2.D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.本題主要考查直線與圓的位置關系,屬于基礎題.3.D【解析】

首先將轉化為,只需求出的取值范圍即可,而表示可行域內的點與圓心距離,數形結合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.本題考查與線性規劃相關的取值范圍問題,涉及到向量的線性運算、數量積、點到直線的距離等知識,考查學生轉化與劃歸的思想,是一道中檔題.4.C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.5.B【解析】

先由三角函數的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B考查三角函數的定義和二倍角公式,是基礎題.6.B【解析】

計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.本題考查了拋物線的焦點,屬于簡單題.7.D【解析】

結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.8.A【解析】

投影即為,利用數量積運算即可得到結論.【詳解】設向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.本題主要考察了向量的數量積運算,難度不大,屬于基礎題.9.A【解析】

根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx10.D【解析】

通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【詳解】由題可知,所以的虛部是1.故選:D.本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.11.B【解析】

由分子、分母的奇偶性,易于確定函數為奇函數,由的近似值即可得出結果.【詳解】設,則,所以是奇函數,圖象關于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.本題通過判斷函數的奇偶性,縮小考察范圍,通過計算特殊函數值,最后做出選擇.本題較易,注重了基礎知識、基本計算能力的考查.12.B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.本題考查復數的運算,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設直線l與函數及的圖象分別相切于,,因為,所以函數的圖象在點處的切線方程為,即,因為,所以函數的圖象在點處的切線方程為,即,因為存在直線l與函數及的圖象都相切,所以,所以,令,設,則,當時,,函數單調遞減;當時,,函數單調遞增,所以,所以實數的最小值為.14.【解析】

對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.15.【解析】

由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.本題考查正態分布曲線,屬于基礎題.16.【解析】

首先整理所給的代數式,然后結合均值不等式的結論即可求得其最小值.【詳解】,結合可知原式,且,當且僅當時等號成立.即最小值為.在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現錯誤.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】

(1)將問題轉化為對任意恒成立,換元構造新函數即可得解;(2)結合(1)可得,令,求導后證明其導函數單調遞增,結合,即可得函數的單調區間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數,又,當時,;當時,,在上是減函數,在上是增函數,,即,.本題考查了利用導數解決恒成立問題,考查了利用導數證明不等式,考查了計算能力和轉化化歸思想,屬于中檔題.18.(1)證明見解析;(2).【解析】

(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當時,,得出,得出,然后可得【詳解】證明:(1)據題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當時,.又,∴,∴,∴.本題考查正弦與余弦定理的應用,屬于基礎題19.(1);(2)【解析】

(1)利用互化公式,將曲線的極坐標方程化為直角坐標方程,得出曲線與極軸所在直線圍成的圖形是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯立方程組,分別求出和的坐標,即可求出.【詳解】解:(1)由于的極坐標方程為,根據互化公式得,曲線的直角坐標方程為:當時,,當時,,則曲線與極軸所在直線圍成的圖形,是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標為,化直角坐標方程為,化直角坐標方程為,∴,∴.本題考查利用互化公式將極坐標方程化為直角坐標方程,以及聯立方程組求交點坐標,考查計算能力.20.(1)2;(2).【解析】

(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當時,有,解得;綜上,,∴實數的取值范圍是.本題主要考查基本不等式的運用和求解含絕對值的不等式,考查學生的分類思想和計算能力,屬于中檔題.21.(1);(2)(i),;(ii).【解析】

(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據的最大值不小于可得關于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關系式為,.(ii)當觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經驗證知,所以.即兩處噴泉間距離的最小值為.本題考查解三角形在實際中的應用,解題時要注意把條件轉化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關系的運用,同時還要注意所得結果要符合實際意義.22.(1)不同的樣本的個數為.(2)①分布列見解析,.②線性回歸方程為.可預測該同學的物理成績為96分.【解析】

(1)按比例抽取即可,再用乘法原理計算不同的樣本數.(2)名學生中物理和數學都優秀的有3名學生,任取3名學生,都優

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論