




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳市光明區2024年中考數學四模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.2.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)3.如圖,在中,,的垂直平分線交于點,垂足為.如果,則的長為()A.2 B.3 C.4 D.64.下列計算正確的是()A.a3?a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a5.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數據的平均數超過130B.這組樣本數據的中位數是147C.在這次比賽中,估計成績為130min的選手的成績會比平均成績差D.在這次比賽中,估計成績為142min的選手,會比一半以上的選手成績要好6.如圖,空心圓柱體的左視圖是()A. B. C. D.7.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數互為相反數,那么圖中的值是().A. B. C. D.8.小明調查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統計圖.在這20位同學中,本學期購買課外書的花費的眾數和中位數分別是()A.50,50 B.50,30 C.80,50 D.30,509.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.10.在平面直角坐標系中,若點A(a,-b)在第一象限內,則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空題(共7小題,每小題3分,滿分21分)11.四張背面完全相同的卡片上分別寫有0、、、、四個實數,如果將卡片字面朝下隨意放在桌子上,任意取一張,那么抽到有理數的概率為___________.12.農科院新培育出A、B兩種新麥種,為了了解它們的發芽情況,在推廣前做了五次發芽實驗,每次隨機各自取相同種子數,在相同的培育環境中分別實驗,實驗情況記錄如下:種子數量10020050010002000A出芽種子數961654919841965發芽率0.960.830.980.980.98B出芽種子數961924869771946發芽率0.960.960.970.980.97下面有三個推斷:①當實驗種子數量為100時,兩種種子的發芽率均為0.96,所以他們發芽的概率一樣;②隨著實驗種子數量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩定性,可以估計A種子出芽的概率是0.98;③在同樣的地質環境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).13.如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當點E、F在BC、CD上滑動時,則△CEF的面積最大值是____.14.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數為()A.50° B.80° C.100° D.130°15.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.16.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.17.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.19.(5分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率20.(8分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發,在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關于直線PC的對稱點E,設點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.21.(10分)如圖,AB是⊙O的直徑,點C是AB的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且OEEB求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.22.(10分)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過點A作x軸的平行線,交函數的圖象于B點,交函數的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?23.(12分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形24.(14分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數為6的一個一元二次方程.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點睛】本題考查矩形的性質、勾股定理、三角形的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題,學會用面積法解決有關線段問題,屬于中考常考題型.2、D【解析】分析:作BC⊥x軸于C,如圖,根據等邊三角形的性質得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據第二象限點的坐標特征可寫出B點坐標;由旋轉的性質得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質.求解時,注意等邊三角形三線合一的性質.3、C【解析】
先利用垂直平分線的性質證明BE=CE=8,再在Rt△BED中利用30°角的性質即可求解ED.【詳解】解:因為垂直平分,所以,在中,,則;故選:C.【點睛】本題主要考查了線段垂直平分線的性質、30°直角三角形的性質,線段的垂直平分線上的點到線段的兩個端點的距離相等.4、D【解析】
根據同底數冪的乘法、積的乘方與冪的乘方及合并同類項的運算法則進行計算即可得出正確答案.【詳解】解:A.x4?x4=x4+4=x8≠x16,故該選項錯誤;B.(a3)2=a3×2=a6≠a5,故該選項錯誤;C.(ab2)3=a3b6≠ab6,故該選項錯誤;D.a+2a=(1+2)a=3a,故該選項正確;故選D.考點:1.同底數冪的乘法;2.積的乘方與冪的乘方;3.合并同類項.5、C【解析】分析:要求平均數只要求出數據之和再除以總個數即可;對于中位數,因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(或最中間的兩個數)即可求解.詳解:平均數=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數據的平均數超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數為第五位和第六位的平均數,故中位數是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數和中位數的定義.要注意,當所給數據有單位時,所求得的平均數和中位數與原數據的單位相同,不要漏單位.6、C【解析】
根據從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.7、D【解析】
根據正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數互為相反數可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.8、A【解析】分析:根據扇形統計圖分別求出購買課外書花費分別為100、80、50、30、20元的同學人數,再根據眾數、中位數的定義即可求解.詳解:由扇形統計圖可知,購買課外書花費為100元的同學有:20×10%=2(人),購買課外書花費為80元的同學有:20×25%=5(人),購買課外書花費為50元的同學有:20×40%=8(人),購買課外書花費為30元的同學有:20×20%=4(人),購買課外書花費為20元的同學有:20×5%=1(人),20個數據為100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在這20位同學中,本學期計劃購買課外書的花費的眾數為50元,中位數為(50+50)÷2=50(元).故選A.點睛:本題考查了扇形統計圖,平均數,中位數與眾數,注意掌握通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.9、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.10、D【解析】
先根據第一象限內的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【詳解】∵點A(a,-b)在第一象限內,∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【點睛】本題考查了點的坐標,解決本題的關鍵是牢記平面直角坐標系中各個象限內點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.【詳解】∵在0.、、、這四個實數種,有理數有0.、、這3個,∴抽到有理數的概率為,故答案為.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.12、②③【解析】分析:根據隨機事件發生的“頻率”與“概率”的關系進行分析解答即可.詳解:(1)由表中的數據可知,當實驗種子數量為100時,兩種種子的發芽率雖然都是96%,但結合后續實驗數據可知,此時的發芽率并不穩定,故不能確定兩種種子發芽的概率就是96%,所以①中的說法不合理;(2)由表中數據可知,隨著實驗次數的增加,A種種子發芽的頻率逐漸穩定在98%左右,故可以估計A種種子發芽的概率是98%,所以②中的說法是合理的;(3)由表中數據可知,隨著實驗次數的增加,A種種子發芽的頻率逐漸穩定在98%左右,而B種種子發芽的頻率穩定在97%左右,故可以估計在相同條件下,A種種子發芽率大于B種種子發芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發生的頻率與概率之間的關系”是正確解答本題的關鍵.13、【解析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點,則BH=2,∴S四邊形AECF=S△ABC=BC?AH=BC?=,由“垂線段最短”可知:當正三角形AEF的邊AE與BC垂直時,邊AE最短,∴△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時△CEF的面積就會最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣××=.故答案為:.點睛:本題主要考查了菱形的性質、全等三角形判定與性質及三角形面積的計算,根據△ABE≌△ACF,得出四邊形AECF的面積是定值是解題的關鍵.14、B【解析】
根據平行線的性質即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點睛】考查平行線的性質,解題的關鍵是熟練掌握平行線的性質,屬于中考基礎題.15、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.16、【解析】
根據△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據直角三角形的性質即可求出△AEF的內切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可證:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
設M是△AEF的內心,過點M作MH⊥AE于H,
則根據圖1的結論得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內切圓、等邊三角形的性質、全等三角形的性質和判定,切線的性質,圓的切線長定理,根據已知得出AH的長是解題關鍵.17、6【解析】
首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點睛】本題考查了勾股定理和三角形中位線定理.三、解答題(共7小題,滿分69分)18、見解析【解析】
根據角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.19、(1);(2).【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有6種等可能的結果數,再找出乙摸到白球的結果數,然后根據概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;
故答案為:;
(2)畫樹狀圖為:
共有6種等可能的結果數,其中乙摸到白球的結果數為2,
所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.20、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設PD=t.則PA=5-t.
∵P、B、E共線,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍棄),∴t=1時,B、E、P共線.(1)如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.作EQ⊥BC于Q,EM⊥DC于M.則EQ=1,CE=DC=3易證四邊形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴∴∴AD=,如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.作EQ⊥BC于Q,延長QE交AD于M.則EQ=1,CE=DC=3在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴∴,∴AD=,綜上所述,在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于1,這樣的m的取值范圍≤m<.【點睛】本題考查四邊形綜合問題,根據題意作出圖形,熟練運用勾股定理和相似三角形的性質是本題的關鍵.21、(1)證明見解析;(2)BH=125【解析】
(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結論;(2)先利用相似三角形求出BF,進而利用勾股定理求出AF,最后利用面積即可得出結論.【詳解】(1)連接OC,∵AB是⊙O的直徑,點C是AB的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵點B在⊙O上,∴BD是⊙O的切線;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根據勾股定理得,AF=5,∵S△ABF=12AB?BF=1∴AB?BF=AF?BH,∴4×3=5BH,∴BH=125【點睛】此題主要考查了切線的判定和性質,三角形中位線的判定和性質,相似三角形的判定和性質,求出BF=3是解本題的關鍵.22、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解析】試題分析:(1)由題意把y=2代入兩個反比例函數的解析式即可求得點B、C的橫坐標,從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個反比例函數的解析式即可求得用“a”表示的點B、C的橫坐標,從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 少兒游泳測試題及答案
- 系統規劃與管理學習的交流平臺建設試題及答案
- 精確掌握圖書管理員考試重點試題及答案
- 補充知識短板2025年鄉村全科執業助理醫師試題及答案
- 理順公共衛生執業考試的試題及答案
- 理論與實際相結合的光電考試準備試題及答案
- 衛生管理與健康促進試題及答案
- 網絡規劃設計師常見誤區及試題及答案
- 衛生管理證書考試經驗交流會試題及答案
- 激光干涉儀原理試題及答案
- 2024-2025學年統編版語文二年級下冊 期中測試題(含答案)
- 遼寧省部分示范性高中2025屆高三下學期4月模擬聯合調研數學試題(無答案)
- 二零二五協警聘用合同范文
- 防雷安全知識培訓課件
- 政務服務人員培訓
- 寵物醫院招聘課件
- 2024年山東司法警官職業學院招聘考試真題
- 2025建筑安全員C證考試(專職安全員)題庫及答案
- 安全標識(教學設計)-2024-2025學年浙美版(2012)美術四年級下冊
- 環境保護部華南環境科學研究所(廣州)2025年上半年招考人員易考易錯模擬試題(共500題)試卷后附參考答案
- 2024-2025學年七年級下冊歷史 【教學課件】第10課《金與南宋的對峙》
評論
0/150
提交評論