2025屆新疆伊犁市奎屯市第一高級中學高三3月三校聯考-數學試題_第1頁
2025屆新疆伊犁市奎屯市第一高級中學高三3月三校聯考-數學試題_第2頁
2025屆新疆伊犁市奎屯市第一高級中學高三3月三校聯考-數學試題_第3頁
2025屆新疆伊犁市奎屯市第一高級中學高三3月三校聯考-數學試題_第4頁
2025屆新疆伊犁市奎屯市第一高級中學高三3月三校聯考-數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆新疆伊犁市奎屯市第一高級中學高三3月三校聯考-數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.42.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.3.已知命題,,則是()A., B.,.C., D.,.4.展開項中的常數項為A.1 B.11 C.-19 D.515.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關系不能確定6.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.47.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.8.已知函數,其中,,其圖象關于直線對稱,對滿足的,,有,將函數的圖象向左平移個單位長度得到函數的圖象,則函數的單調遞減區間是()A. B.C. D.9.已知等差數列的前項和為,且,則()A.45 B.42 C.25 D.3610.已知點、.若點在函數的圖象上,則使得的面積為的點的個數為()A. B. C. D.11.函數在上的圖象大致為()A. B. C. D.12.定義運算,則函數的圖象是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為虛數單位,且,則=_____.14.定義在封閉的平面區域內任意兩點的距離的最大值稱為平面區域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構成平面區域,則平面區域的“直徑”的最大值是__________.15.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.16.如圖,某地一天從時的溫度變化曲線近似滿足函數,則這段曲線的函數解析式為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)根據國家統計局數據,1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據數據及統計圖表,判斷與(其中為自然對數的底數)哪一個更適宜作為全國GDP總量關于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關于的回歸方程.(2)使用參考數據,估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數據:45678的近似值551484031097298118.(12分)已知等差數列的公差,且,,成等比數列.(1)求數列的通項公式;(2)設,求數列的前項和.19.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設,求的取值范圍.20.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.21.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.22.(10分)在平面直角坐標系中,直線的的參數方程為(其中為參數),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設直線l的方程為x=y,與拋物線聯立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y,并與y2=2px聯立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.2、A【解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.3、B【解析】

根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.4、B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.5、B【解析】

先用定積分求得陰影部分一半的面積,再根據幾何概型概率公式可求得.【詳解】根據題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.6、C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.7、D【解析】

根據雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.8、B【解析】

根據已知得到函數兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據圖像變換的知識求得的解析式,再利用三角函數求單調區間的方法,求得的單調遞減區間.【詳解】解:已知函數,其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據其圖像關于直線對稱,可得,.∴,∴.將函數的圖像向左平移個單位長度得到函數的圖像.令,求得,則函數的單調遞減區間是,,故選B.【點睛】本小題主要考查三角函數圖像與性質求函數解析式,考查三角函數圖像變換,考查三角函數單調區間的求法,屬于中檔題.9、D【解析】

由等差數列的性質可知,進而代入等差數列的前項和的公式即可.【詳解】由題,.故選:D【點睛】本題考查等差數列的性質,考查等差數列的前項和.10、C【解析】

設出點的坐標,以為底結合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關于的方程,求出方程的解,即可得出結論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.11、C【解析】

根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.12、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

解:利用復數相等,可知由有.14、【解析】

先找到平面區域內任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應用問題,涉及到距離的最值問題,在處理這類問題時,一定要數形結合,本題屬于中檔題.15、【解析】

取的中點為M,由可得,可得M在上,當最小時,弦的長才最大.【詳解】設為的中點,,即,即,,.設,則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關系的綜合應用,考查學生的邏輯推理、數形結合的思想,是一道有一定難度的題.16、,【解析】

根據圖象得出該函數的最大值和最小值,可得,,結合圖象求得該函數的最小正周期,可得出,再將點代入函數解析式,求出的值,即可求得該函數的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數解析式,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)148萬億元.【解析】

(1)由散點圖知更適宜,對兩邊取自然對數得,令,,,則,再利用線性回歸方程的計算公式計算即可;(2)將代入所求的回歸方程中計算即可.【詳解】(1)根據數據及圖表可以判斷,更適宜作為全國GDP總量關于的回歸方程.對兩邊取自然對數得,令,,,得.因為,所以,所以關于的線性回歸方程為,所以關于的回歸方程為.(2)將代入,其中,于是2020年的全國GDP總量約為:萬億元.【點睛】本題考查非線性回歸方程的應用,在處理非線性回歸方程時,先作變換,轉化成線性回歸直線方程來處理,是一道中檔題.18、(1);(2).【解析】

(1)根據等比中項性質可構造方程求得,由等差數列通項公式可求得結果;(2)由(1)可得,可知為等比數列,利用分組求和法,結合等差和等比數列求和公式可求得結果.【詳解】(1)成等比數列,,即,,解得:,.(2)由(1)得:,,,數列是首項為,公比為的等比數列,.【點睛】本題考查等差數列通項公式的求解、分組求和法求解數列的前項和的問題;關鍵是能夠根據通項公式證得數列為等比數列,進而采用分組求和法,結合等差和等比數列求和公式求得結果.19、(1)(2)【解析】

(1)先利用同角的三角函數關系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數值求值,考查正弦定理的應用.20、(1)見解析(2)【解析】

(1)利用正弦定理求得,由此得到,結合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設平面的法向量為,由可得:,令,則,設平面的法向量為,由可得:,令,則,設二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【點睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)(2)【解析】

(1)利用正弦定理和余弦定理化簡,根據勾股定理逆定理求得.(2)設,由此求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設,,,由,根據正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設,,由(1)的結論知.在中,,由,所以.在中,,由,所以.所以,由,所以當,即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數性質及其三角恒等變換等基礎知識;考查運算求解能力,推理論證能力,化歸與轉換思想,應用意識.22、(1),;(2)【解析】

(1)利用代入法消去參數可得到直線的普通方程,利用公式可得到曲線的直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論