




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省陽泉市2025屆高三年級三模數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合的子集的個數是()A.2 B.3 C.4 D.82.關于函數,有下列三個結論:①是的一個周期;②在上單調遞增;③的值域為.則上述結論中,正確的個數為()A. B. C. D.3.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.4.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.5.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.6.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.7.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或8.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.9.把函數的圖象向右平移個單位,得到函數的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數是()A.1 B.2 C.3 D.410.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.11.設為非零實數,且,則()A. B. C. D.12.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.14.函數在的零點個數為________.15.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.16.定義在R上的函數滿足:①對任意的,都有;②當時,,則函數的解析式可以是______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數k的值.18.(12分)在平面直角坐標系中,曲線的參數方程為(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.19.(12分)已知,均為給定的大于1的自然數,設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.20.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規定每件0.65元,乙公司規定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據題中數據寫出甲公司員工在這10天投遞的快件個數的平均數和眾數;(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數學期望;(3)根據題中數據估算兩公司被抽取員工在該月所得的勞務費.21.(12分)已知(1)若,且函數在區間上單調遞增,求實數a的范圍;(2)若函數有兩個極值點,且存在滿足,令函數,試判斷零點的個數并證明.22.(10分)已知正數x,y,z滿足xyzt(t為常數),且的最小值為,求實數t的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.2.B【解析】
利用三角函數的性質,逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調遞增,②錯誤;③因為,所以是偶函數,又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調遞增,所以,的值域為,③錯誤;綜上,正確的個數只有一個,故選B.本題主要考查三角函數的性質應用.3.B【解析】
由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.4.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.5.B【解析】
①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.6.C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.本題考查了幾何概型中的長度型,屬于基礎題.7.D【解析】
設,,根據和拋物線性質得出,再根據雙曲線性質得出,,最后根據余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質,考查運算求解能力,屬于中檔題.8.C【解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.本小題主要考查函數的單調性和奇偶性,屬于基礎題.9.C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導,并得到導函數的值域,即可判斷④.【詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當時,,所以是函數的一條對稱軸,②正確;當時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C本題考查三角函數的圖像變換,考查代入檢驗法判斷余弦型函數的對稱軸和對稱中心,考查導函數的幾何意義的應用.10.B【解析】
根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B本題考查圓柱的體積,屬于基礎題.11.C【解析】
取,計算知錯誤,根據不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.12.D【解析】
利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.本題主要考查平面向量的線性運算和平面向量的數量積,由題意作出是解題的關鍵.14.【解析】
求出的范圍,再由函數值為零,得到的取值可得零點個數.【詳解】詳解:由題可知,或解得,或故有3個零點.本題主要考查三角函數的性質和函數的零點,屬于基礎題.15.【解析】
以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數量積的坐標運算可得,再根據輔助角公式以及三角函數的性質即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:本題考查了向量數量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數的性質,屬于中檔題.16.(或,答案不唯一)【解析】
由可得是奇函數,再由時,可得到滿足條件的奇函數非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數,由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).本題考查抽象函數的性質,涉及到由表達式確定函數奇偶性,是一道開放性的題,難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】
(1)聯立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數關系解決相交弦問題,考查計算求解能力,屬于中檔題.18.(1),,直線的傾斜角為(2)【解析】
(1)由公式消去參數得普通方程,由公式可得直角坐標方程后可得傾斜角;(2)求出直線與軸交點,用參數表示點坐標,求出,利用三角函數的性質可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標為則當且僅當時,取最大值.本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,屬于基礎題.求兩點間距離的最值時,用參數方程設點的坐標可把問題轉化為三角函數問題.19.(Ⅰ);(Ⅱ)(ⅰ)詳見解析.(ⅱ)詳見解析.(Ⅲ)詳見解析.【解析】
(Ⅰ)當,時,,,,,,.即可得出.(Ⅱ)(i)當時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設,,,,其中,,,2,,.,可得,通過求和即可證明結論.【詳解】(Ⅰ)解:當,時,,,,,..(Ⅱ)證明:(i)當時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設,,,,其中,,,2,,.,..本題主要考查等差數列與等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于難題.20.(1)平均數為360,眾數為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)將圖中甲公司員工A的所有數據相加,再除以總的天數10,即可求出甲公司員工A投遞快遞件數的平均數.從中發現330出現的次數最多,故為眾數;(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數學期望;(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數的平均數為.眾數為330.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃商業房合同協議
- 租地大戶轉讓合同協議
- 砌河道施工合同協議
- 租房合同協議出售模板
- 番薯粥店轉讓合同協議
- 畫室老師勞務合同協議
- 生意貸汽車購銷合同協議
- 電動游艇租賃合同協議
- 生鮮超市顧問合同協議
- 電子屏維護合同協議
- 無人機法律法規知識考核試題及答案
- 2024年廣東省梅州市中考一模歷史試題(無答案)
- 2024年北京鐵路局集團招聘筆試參考題庫含答案解析
- 前列腺癌2024治療指南
- (正式版)YST 1682-2024 鎂冶煉行業綠色工廠評價要求
- 2024-2029年中國形象設計行業發展分析及發展前景與投資研究報告
- 2024中國綠色甲醇產業研究與前景展望-云道資本
- 1500萬噸-年煉化一體化項目環評
- 500字作文標準稿紙A4打印模板-直接打印
- 兒童康復家庭指導培訓課件
- 單元2-任務3 水利工程年運行費及年費用計算
評論
0/150
提交評論