安徽省全國示范高中名校2025屆高三下學期第三次段考數學試題試卷_第1頁
安徽省全國示范高中名校2025屆高三下學期第三次段考數學試題試卷_第2頁
安徽省全國示范高中名校2025屆高三下學期第三次段考數學試題試卷_第3頁
安徽省全國示范高中名校2025屆高三下學期第三次段考數學試題試卷_第4頁
安徽省全國示范高中名校2025屆高三下學期第三次段考數學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省全國示范高中名校2025屆高三下學期第三次段考數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且2.已知實數滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.113.已知復數,則的虛部為()A.-1 B. C.1 D.4.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.5.下列函數中,值域為的偶函數是()A. B. C. D.6.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.27.設函數,則使得成立的的取值范圍是().A. B.C. D.8.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.9.執行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.10.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.11.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.12.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環所占面積與單獨五個環面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統計落入五環內部及其邊界上的點數為n個,已知圓環半徑為1,則比值P的近似值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,如果函數有三個零點,則實數的取值范圍是____________14.我國著名的數學家秦九韶在《數書九章》提出了“三斜求積術”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數的一半,自乘而得一個數,小斜平方乘以大斜平方,送到上面得到的那個數,相減后余數被4除,所得的數作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.15.展開式中項的系數是__________16.函數的圖象向右平移個單位后,與函數的圖象重合,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,求不等式的解集;(2)若不等式恒成立,求實數a的取值范圍.18.(12分)隨著小汽車的普及,“駕駛證”已經成為現代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統計,得到下表:考試情況男學員女學員第1次考科目二人數1200800第1次通過科目二人數960600第1次未通過科目二人數240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產生的補考費用之和為元,求的分布列與數學期望.19.(12分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設的中垂線在軸上的截距為,求的取值范圍.20.(12分)已知數列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數列的通項公式;(2)已知數列滿足,,設數列的前項和為,求大于的最小的正整數的值.21.(12分)已知函數.(1)若,證明:當時,;(2)若在只有一個零點,求的值.22.(10分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】由且可得,故選B.2.A【解析】

根據約束條件畫出可行域,再將目標函數化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變為為斜率為-3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規劃求一次相加的目標函數,屬于常規題型,是簡單題.3.A【解析】

分子分母同乘分母的共軛復數即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數的除法運算,考查學生運算能力,是一道容易題.4.B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.5.C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.6.A【解析】

設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.7.B【解析】

由奇偶性定義可判斷出為偶函數,由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數,當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數的單調性和奇偶性求解函數不等式的問題;奇偶性的作用是能夠確定對稱區間的單調性,單調性的作用是能夠將函數值的大小關系轉化為自變量的大小關系,進而化簡不等式.8.A【解析】

根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.9.B【解析】

列出循環的每一步,進而可求得輸出的值.【詳解】根據程序框圖,執行循環前:,,,執行第一次循環時:,,所以:不成立.繼續進行循環,…,當,時,成立,,由于不成立,執行下一次循環,,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.10.B【解析】

利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.11.C【解析】

根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.12.B【解析】

根據比例關系求得會旗中五環所占面積,再計算比值.【詳解】設會旗中五環所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先把零點問題轉化為方程問題,等價于有三個零點,兩側開方,可得,即有三個零點,再運用函數的單調性結合最值即可求出參數的取值范圍.【詳解】若函數有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數單調遞增,,,所以函數在區間上只有一解,對于函數,,解得,,解得,,解得,所以函數在區間上單調遞減,在區間上單調遞增,,當時,,當時,,此時函數若有兩個零點,則有,綜上可知,若函數有三個零點,則實數的取值范圍是.故答案為:【點睛】本題考查了函數零點的零點,恰當的開方,轉化為函數有零點問題,注意恰有三個零點條件的應用,根據函數的最值求解參數的范圍,屬于難題.14..【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據“三斜求積術”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數的基本關系式,余弦定理的應用,考查學生分析問題的能力和計算整理能力,難度較易.15.-20【解析】

根據二項式定理的通項公式,再分情況考慮即可求解.【詳解】解:展開式中項的系數:二項式由通項公式當時,項的系數是,當時,項的系數是,故的系數為;故答案為:【點睛】本題主要考查二項式定理的應用,注意分情況考慮,屬于基礎題.16.【解析】

根據函數圖象的平移變換公式求得變換后的函數解析式,再利用誘導公式求得滿足的方程,結合題中的范圍即可求解.【詳解】由函數圖象的平移變換公式可得,函數的圖象向右平移個單位后,得到的函數解析式為,因為函數,所以函數與函數的圖象重合,所以,即,因為,所以.故答案為:【點睛】本題考查函數圖象的平移變換和三角函數的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用分段討論法去掉絕對值,結合圖象,從而求得不等式的解集;(2)求出函數的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.18.(1);(2)見解析.【解析】

事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據題意可求相應的概率,進而可求X的數學期望.【詳解】事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點睛】本題以實際問題為素材,考查離散型隨機變量的概率及期望,解題時要注意獨立事件概率公式的靈活運用,屬于基礎題.19.;【解析】

根據題意,求出直線方程并與拋物線方程聯立,利用韋達定理,結合,即可求出拋物線C的方程;設,的中點為,把直線l方程與拋物線方程聯立,利用判別式求出的取值范圍,利用韋達定理求出,進而求出的中垂線方程,即可求得在軸上的截距的表達式,然后根據的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯立可得,,設,由韋達定理可得,,因為,,所以,解得,所以拋物線C的方程為;設,的中點為,由,消去可得,所以判別式,解得或,由韋達定理可得,,所以的中垂線方程為,令則,因為或,所以即為所求.【點睛】本題考查拋物線的標準方程和直線與拋物線的位置關系,考查向量知識的運用;考查學生分析問題、解決問題的能力和運算求解能力;屬于中檔題.20.(1)(2)4【解析】

(1)利用判斷是等差數列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數.【詳解】解:任意都有,數列是等差數列,,又是與的等比中項,,設數列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數的值為.【點睛】本題考查等差數列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數列通項的思路(1)在等差數列中,是最基本的兩個量,一般可設出和,利用等差數列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數列是等差數列,是等比數列,求數列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數列的公比,然后作差求解;在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式21.(1)見解析;(2)【解析】

分析:(1)先構造函數,再求導函數,根據導函數不大于零得函數單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數:,這里產生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論