




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南城縣二中2025屆3月高三階段性訓練數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.2.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.73.已知集合,集合,則A. B.或C. D.4.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.5.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.6.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.7.《九章算術》是我國古代內容極為豐富的數學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺8.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種9.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.10.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.11.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.12.定義,已知函數,,則函數的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為正實數,若則的取值范圍是__________.14.在一塊土地上種植某種農作物,連續5年的產量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農作物的年平均產量是______噸.15.已知的展開式中項的系數與項的系數分別為135與,則展開式所有項系數之和為______.16.的展開式中,常數項為______;系數最大的項是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當a=2時,求不等式的解集;(2)設函數.當時,,求的取值范圍.18.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.19.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.20.(12分)已知函數,.(1)討論函數的單調性;(2)已知在處的切線與軸垂直,若方程有三個實數解、、(),求證:.21.(12分)已知數列滿足且(1)求數列的通項公式;(2)求數列的前項和.22.(10分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.2、B【解析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.3、C【解析】
由可得,解得或,所以或,又,所以,故選C.4、B【解析】
由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.5、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數量積的運算性質、向量垂直與數量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.6、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數,利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數學運算的能力,屬于基礎題.7、A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個四棱錐和1個直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數據分割與計算是解題的關鍵.8、C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.9、A【解析】
求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質的應用.10、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.11、D【解析】
利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.12、A【解析】
根據分段函數的定義得,,則,再根據基本不等式構造出相應的所需的形式,可求得函數的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數的最值,關鍵在于根據分段函數的定義得出,再由基本不等式求得最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據,可得,進而,有,而,令,得到,再用導數法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應用和導數法求最值,還考查了運算求解的能力,屬于難題,14、10【解析】
根據已知數據直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數,是基礎題.15、64【解析】
由題意先求得的值,再令求出展開式中所有項的系數和.【詳解】的展開式中項的系數與項的系數分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數和,屬于基礎題.16、【解析】
求出二項展開式的通項,令指數為零,求出參數的值,代入可得出展開式中的常數項;求出項的系數,利用作商法可求出系數最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數項為;令,令,即,解得,,,因此,展開式中系數最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數項的求解,同時也考查了系數最大項的求解,涉及展開式通項的應用,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.18、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.19、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面內,所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.20、(1)①當時,在單調遞增,②當時,單調遞增區間為,,單調遞減區間為(2)證明見解析【解析】
(1)先求解導函數,然后對參數分類討論,分析出每種情況下函數的單調性即可;(2)根據條件先求解出的值,然后構造函數分析出之間的關系,再構造函數分析出之間的關系,由此證明出.【詳解】(1),①當時,恒成立,則在單調遞增②當時,令得,解得,又,∴∴當時,,單調遞增;當時,,單調遞減;當時,,單調遞增.(2)依題意得,,則由(1)得,在單調遞增,在上單調遞減,在上單調遞增∴若方程有三個實數解,則法一:雙偏移法設,則∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞減,∴,即設,∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞增,∴,即∴.法二:直接證明法∵,,在上單調遞增,∴要證,即證設,則∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園教師節活動方案2025年
- 2025年五一勞動節各活動促銷策劃方案
- 2025年安全生產工作中長期規劃實施方案演講稿
- 江西農業工程職業學院《擴展英語》2023-2024學年第一學期期末試卷
- 天津商業大學寶德學院《跨文化商務交際導論》2023-2024學年第一學期期末試卷
- 2025春新版六年級下冊語文成語選詞填空練習
- 山東省聊城市陽谷縣重點名校2025年初三周考生物試題一含解析
- 江蘇省南通市崇川區達標名校2025年初三畢業班3月適應性線上測試(一)英語試題含答案
- 浙東北聯盟2025屆高三開學摸底聯考物理試題試卷含解析
- 浙江郵電職業技術學院《機器學習與量化投資》2023-2024學年第二學期期末試卷
- 粘液囊腫病例
- 工務系統職工崗位必知必會培訓手冊大型養路機械司機搗固車運用檢修
- 如何幫助大學生克服游戲成癮問題
- 婦產科三基考試題及答案
- 生物制藥技術專業建設方案
- 無錫星洲工業園低碳園區規劃方案
- 垃圾中轉站污水處理方案
- 河北石家莊旅游PPT介紹石家莊幻燈片模板
- 宴席設計與菜品開發第二版勞動版宴席菜肴與菜單設計課件
- 軸向拉壓桿的強度計算
- 電力現貨市場基礎知識
評論
0/150
提交評論