河北省石家莊市重點(diǎn)中學(xué)2025年高三(下)期末數(shù)學(xué)試題試卷_第1頁(yè)
河北省石家莊市重點(diǎn)中學(xué)2025年高三(下)期末數(shù)學(xué)試題試卷_第2頁(yè)
河北省石家莊市重點(diǎn)中學(xué)2025年高三(下)期末數(shù)學(xué)試題試卷_第3頁(yè)
河北省石家莊市重點(diǎn)中學(xué)2025年高三(下)期末數(shù)學(xué)試題試卷_第4頁(yè)
河北省石家莊市重點(diǎn)中學(xué)2025年高三(下)期末數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省石家莊市重點(diǎn)中學(xué)2025年高三(下)期末數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.2.已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.3.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣124.已知向量,夾角為,,,則()A.2 B.4 C. D.5.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.26.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.7.已知我市某居民小區(qū)戶主人數(shù)和戶主對(duì)戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對(duì)戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,188.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.9.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,10.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.11.若,則()A. B. C. D.12.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式的解集不是空集,則實(shí)數(shù)的取值范圍是;若不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是___14.函數(shù)的圖象向右平移個(gè)單位后,與函數(shù)的圖象重合,則_____.15.已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=__________.16.已知點(diǎn)M是曲線y=2lnx+x2﹣3x上一動(dòng)點(diǎn),當(dāng)曲線在M處的切線斜率取得最小值時(shí),該切線的方程為_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.18.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,且.若點(diǎn)為的準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)作的兩條切線,其中為切點(diǎn).(1)求拋物線的方程;(2)求證:直線恒過(guò)定點(diǎn),并求面積的最小值.19.(12分)中的內(nèi)角,,的對(duì)邊分別是,,,若,.(1)求;(2)若,點(diǎn)為邊上一點(diǎn),且,求的面積.20.(12分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)寫出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點(diǎn)M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動(dòng)點(diǎn),求面積的最大值.21.(12分)在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo).22.(10分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.2.C【解析】

畫出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于常考題.3.D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過(guò)C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問(wèn)題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。4.A【解析】

根據(jù)模長(zhǎng)計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長(zhǎng)的求解,屬綜合基礎(chǔ)題.5.B【解析】

先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)椋裕忠驗(yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.6.C【解析】

先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.7.A【解析】

利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對(duì)四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對(duì)四居室滿意的人數(shù)為:故選A.【點(diǎn)睛】本題考查樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.8.C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9.D【解析】

由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過(guò)點(diǎn),求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過(guò)點(diǎn),,則故選【點(diǎn)睛】本題主要考查的是的圖像的運(yùn)用,在解答此類題目時(shí)一定要挖掘圖像中的條件,計(jì)算三角函數(shù)的周期、最值,代入已知點(diǎn)坐標(biāo)求出結(jié)果10.B【解析】

試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問(wèn)題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常常考慮用拋物線的定義進(jìn)行問(wèn)題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過(guò)余弦定理建立關(guān)系.11.D【解析】

直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.12.D【解析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長(zhǎng)公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問(wèn)題.解決圓錐曲線中的面積類最值問(wèn)題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來(lái)求解最值.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用絕對(duì)值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡(jiǎn)不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡(jiǎn)不等式有,即而當(dāng)時(shí)滿足題意,解得或所以答案為【點(diǎn)睛】本題主要考查的是函數(shù)恒成立的問(wèn)題和絕對(duì)值不等式,要注意到絕對(duì)值的幾何意義,數(shù)形結(jié)合來(lái)解答本題,注意去絕對(duì)值時(shí)的分類討論化簡(jiǎn)14.【解析】

根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導(dǎo)公式求得滿足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個(gè)單位后,得到的函數(shù)解析式為,因?yàn)楹瘮?shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因?yàn)?所以.故答案為:【點(diǎn)睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導(dǎo)公式;誘導(dǎo)公式的靈活運(yùn)用是求解本題的關(guān)鍵;屬于中檔題.15.【解析】

根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對(duì)數(shù)式的化簡(jiǎn)即可求解.【詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對(duì)數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的簡(jiǎn)單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對(duì)數(shù)式的化簡(jiǎn)運(yùn)算,屬于中檔題.16.【解析】

先求導(dǎo)數(shù)可得切線斜率,利用基本不等式可得切點(diǎn)橫坐標(biāo),從而可得切線方程.【詳解】,,=1時(shí)有最小值1,此時(shí)M(1,﹣2),故切線方程為:,即.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點(diǎn)處的導(dǎo)數(shù)值等于切線的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.【解析】

由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃嚕?矩陣的特征多項(xiàng)式為,令,則或,所以,即,所以,所以【點(diǎn)睛】本題考查矩陣的乘法及特征值、特征向量有關(guān)的問(wèn)題,考查學(xué)生的運(yùn)算能力,是一道容易題.18.(1)(2)見解析,最小值為4【解析】

(1)根據(jù)焦點(diǎn)到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判斷出直線恒過(guò)拋物線焦點(diǎn).求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意,解得(負(fù)根舍去)∴拋物線的方程為(2)設(shè)點(diǎn),由,即,得∴拋物線在點(diǎn)處的切線的方程為,即∵,∴∵點(diǎn)在切線上,①,同理,②綜合①、②得,點(diǎn)的坐標(biāo)都滿足方程.即直線恒過(guò)拋物線焦點(diǎn)當(dāng)時(shí),此時(shí),可知:當(dāng),此時(shí)直線直線的斜率為,得于是,而把直線代入中消去得,即:當(dāng)時(shí),最小,且最小值為4【點(diǎn)睛】本小題主要考查點(diǎn)到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過(guò)定點(diǎn)問(wèn)題,考查拋物線中三角形面積的最值的求法,考查運(yùn)算求解能力,屬于難題.19.(1)(2)10【解析】

(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計(jì)算即可;(2)由已知可得,利用余弦定理解出,由已知計(jì)算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡(jiǎn)得,,解得或(負(fù)值舍去),,,,,,的面積.【點(diǎn)睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,考查了運(yùn)算能力,屬于基礎(chǔ)題.20.(1),,;(2).【解析】

(1)利用公式即可求得曲線的極坐標(biāo)方程;聯(lián)立直線和曲線的極坐標(biāo)方程,即可求得交點(diǎn)坐標(biāo);(2)設(shè)出點(diǎn)坐標(biāo)的參數(shù)形式,將問(wèn)題轉(zhuǎn)化為求三角函數(shù)最值的問(wèn)題即可求得.【詳解】(1)曲線的極坐標(biāo)方程:聯(lián)立,得,又因?yàn)槎紳M足兩方程,故兩曲線的交點(diǎn)為,.(2)易知,直線.設(shè)點(diǎn),則點(diǎn)到直線的距離(其中).面積的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問(wèn)題,屬綜合中檔題.21.【解析】

將直線的極坐標(biāo)方程和曲線的參數(shù)方程分別化為直角坐標(biāo)方程,聯(lián)立直角坐標(biāo)方程求出交點(diǎn)坐標(biāo),結(jié)合的取值范圍進(jìn)行取舍即可.【詳解】因?yàn)橹本€的極坐標(biāo)方程為,所以直線的普通方程為,又因?yàn)榍€的參數(shù)方程為(為參數(shù)),所以曲線的直角坐標(biāo)方程為,聯(lián)立方程,解得或,因?yàn)椋陨崛ィ庶c(diǎn)的直角坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化;考查運(yùn)算求解能力;熟練掌握極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化公式是求解本題的關(guān)鍵;屬于中檔題、常考題型.22.(1)當(dāng)時(shí),無(wú)極值;當(dāng)時(shí),極小值為;(2).【解析】

(1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問(wèn)題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時(shí),,函

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論