




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅肅蘭州五十一中高三4月適應性訓練(一)數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.2.在原點附近的部分圖象大概是()A. B.C. D.3.設分別為的三邊的中點,則()A. B. C. D.4.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.25.已知函數,將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數的圖象,若,則的值可能為()A. B. C. D.6.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.87.已知集合,,則A. B.C. D.8.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數的取值為A.或11 B.或11 C. D.9.已知函數,則不等式的解集是()A. B. C. D.10.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.11.設是虛數單位,則()A. B. C. D.12.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.14.已知全集,集合,則______.15.已知,且,則__________.16.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.18.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.19.(12分)已知{an}是一個公差大于0的等差數列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數列{bn}滿足:…,求{bn}的前n項和.20.(12分)已知函數.(1)若,證明:當時,;(2)若在只有一個零點,求的值.21.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸的路程為S(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.22.(10分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.2.A【解析】
分析函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數的定義域為,定義域關于原點對稱,,則函數為奇函數,排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數解析式選擇函數圖象,一般要分析函數的定義域、奇偶性、單調性、零點以及函數值符號,考查分析問題和解決問題的能力,屬于中等題.3.B【解析】
根據題意,畫出幾何圖形,根據向量加法的線性運算即可求解.【詳解】根據題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.4.B【解析】
求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.5.C【解析】
利用二倍角公式與輔助角公式將函數的解析式化簡,然后利用圖象變換規律得出函數的解析式為,可得函數的值域為,結合條件,可得出、均為函數的最大值,于是得出為函數最小正周期的整數倍,由此可得出正確選項.【詳解】函數,將函數的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數的圖象,易知函數的值域為.若,則且,均為函數的最大值,由,解得;其中、是三角函數最高點的橫坐標,的值為函數的最小正周期的整數倍,且.故選C.【點睛】本題考查三角函數圖象變換,同時也考查了正弦型函數與周期相關的問題,解題的關鍵在于確定、均為函數的最大值,考查分析問題和解決問題的能力,屬于中等題.6.B【解析】
根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.7.D【解析】
因為,,所以,,故選D.8.A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.9.B【解析】
由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.10.A【解析】
設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數量積的運算性質的應用,考查計算能力,屬于中等題.11.A【解析】
利用復數的乘法運算可求得結果.【詳解】由復數的乘法法則得.故選:A.【點睛】本題考查復數的乘法運算,考查計算能力,屬于基礎題.12.D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數求出最小值.【詳解】由題可知,,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數單調性可知其在區間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數量積的最值問題,應用函數形式表示所求式子,進而利用分析函數單調性或基本不等式求得最值,屬于較難題.14.【解析】
根據題意可得出,然后進行補集的運算即可.【詳解】根據題意知,,,,.故答案為:.【點睛】本題考查列舉法的定義、全集的定義、補集的運算,考查計算能力,屬于基礎題.15.【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.16.③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2).【解析】
(1)取中點,連,可得,結合平面EAD⊥平面ABCD,可證平面ABCD,進而有,再由底面是菱形可得,可得,可證得平面,即可證明結論;(2)設底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結論.【詳解】(1)取中點,連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點,,平面,平面平面,;(2)設菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【點睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關系之間的相互轉化,體積問題要熟練應用等體積方法,屬于中檔題.18.(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結合sinB>1,可求tanA=,結合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.19.(I);(Ⅱ)【解析】
(Ⅰ)設等差數列的公差為,則依題設.由,可得.由,得,可得.所以.可得.(Ⅱ)設,則.即,可得,且.所以,可知.所以,所以數列是首項為4,公比為2的等比數列.所以前項和.考點:等差數列通項公式、用數列前項和求數列通項公式.20.(1)見解析;(2)【解析】
分析:(1)先構造函數,再求導函數,根據導函數不大于零得函數單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數:,這里產生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設函數,則.當時,,所以在單調遞減.而,故當時,,即.(2)設函數.在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調遞減,在單調遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.21.(1),,.(2)當時,此時選擇火車運輸費最省;當時,此時選擇飛機運輸費用最省;當時,此時選擇火車或飛機運輸費用最省.【解析】
(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數的模型,考查了分類討論的思想,屬于基礎題.22.(1)的值為或.(2)【解析】
(1)分類討論,當時,線段與拋物線沒有公共點,設點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村宅基地及農業生產用地流轉合同
- 電控箱安裝合同協議書
- 電箱供應合同協議書
- 賓館轉讓合同解除協議書
- 膳食服務合同協議書范本
- 學校與武館合同協議書
- 2025建筑工程承包施工合同(水電工)
- 2025標準居間服務合同
- 2025全新實驗室租賃合同
- 家庭開荒安全合同協議書
- 呼吸內科科普知識
- 《煤礦安全生產責任制》培訓課件2025
- 體育賽事組織的合理化建議與措施
- 2023年普通高等學校招生全國統一考試(全國甲卷)物理試題含答案
- 構建素養導向的小學數學“套餐式”作業設計的實踐與研究
- 華佗古本五禽戲知到智慧樹章節測試課后答案2024年秋安徽中醫藥大學
- 2025年管理類聯考《英語二》真題復盤卷(帶解析)
- 2025年嚴紀律轉作風樹形象心得體會樣本(3篇)
- 六年級下冊科學復習心得分享會
- 嬰幼兒喂養的正確方法
- 110kV鋼管桿技術規范書
評論
0/150
提交評論