四川省峨眉山市第七教育發(fā)展聯(lián)盟2025年高三3月測試數(shù)學試題_第1頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟2025年高三3月測試數(shù)學試題_第2頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟2025年高三3月測試數(shù)學試題_第3頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟2025年高三3月測試數(shù)學試題_第4頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟2025年高三3月測試數(shù)學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

四川省峨眉山市第七教育發(fā)展聯(lián)盟2025年高三3月測試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等式成立,則()A.0 B.5 C.7 D.132.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.3.若復數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.44.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.5.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.6.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.7.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.8.已知,若則實數(shù)的取值范圍是()A. B. C. D.9.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.410.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.11.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.12.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關于直線對稱 D.的最大值是二、填空題:本題共4小題,每小題5分,共20分。13.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.14.二項式的展開式的各項系數(shù)之和為_____,含項的系數(shù)為_____.15.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.16.在三棱錐P-ABC中,,,,三個側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.18.(12分)已知函數(shù).⑴當時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.20.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.21.(12分)在直角坐標系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;(2)若曲線與直線交于兩點,點的坐標為,求的值.22.(10分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數(shù)列,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.2.B【解析】

由題中垂直關系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.3.B【解析】

根據(jù)復數(shù)的幾何意義可知復數(shù)對應的點在以原點為圓心,1為半徑的圓上,再根據(jù)復數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復數(shù)對應的點在以原點為圓心,1為半徑的圓上,表示復數(shù)對應的點與點間的距離,又復數(shù)對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數(shù)模的定義及其幾何意義應用,屬于基礎題.4.D【解析】

利用導數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.5.B【解析】

根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當且僅當,時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.6.B【解析】

設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.7.B【解析】

由焦點得拋物線方程,設點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質(zhì),點關于直線對稱,屬于中檔題.8.C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,9.D【解析】可以是共4個,選D.10.B【解析】由題意可得c=,設右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.11.A【解析】

先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.12.D【解析】

通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導數(shù)判斷函數(shù)最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】

計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應用,屬于中檔題.14.【解析】

將代入二項式可得展開式各項系數(shù)之和,寫出二項展開式通項,令的指數(shù)為,求出參數(shù)的值,代入通項即可得出項的系數(shù).【詳解】將代入二項式可得展開式各項系數(shù)和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數(shù)為.故答案為:;.【點睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.15.【解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.16.【解析】

先確定頂點在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側(cè)面與底面所成的角均為,,,的高,,設內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內(nèi)切球的半徑,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)(i)(ii)分布列見解析,【解析】

(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數(shù)學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.【點睛】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數(shù)學運算的能力,屬于中檔題.18.(1)當時,函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當時,,所以所以當時,,當時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當時,函數(shù)取得極小值為,無極大值;(2)設函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設,則對恒成立,所以在區(qū)間上單調(diào)遞增,又所以當時,即當時,又當時因此當時,函數(shù)必有零點;即當時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調(diào)遞減,因此所以實數(shù)的取值范圍是.19.(1),(2)存在,【解析】

(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉(zhuǎn)化為極坐標方程.根據(jù)極坐標和直角坐標轉(zhuǎn)化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.【點睛】本小題主要考查坐標變換,考查直線和圓的位置關系,考查極坐標方程和直角坐標方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.20.(1)2;(2).【解析】

(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論