




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱師范大學附中2025屆高三數學試題教學情況調查(一)數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知函數的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.2.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.3.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.4.2019年10月17日是我國第6個“扶貧日”,某醫院開展扶貧日“送醫下鄉”醫療義診活動,現有五名醫生被分配到四所不同的鄉鎮醫院中,醫生甲被指定分配到醫院,醫生乙只能分配到醫院或醫院,醫生丙不能分配到醫生甲、乙所在的醫院,其他兩名醫生分配到哪所醫院都可以,若每所醫院至少分配一名醫生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種5.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.6.用數學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+17.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.8.已知,則的值等于()A. B. C. D.9.棱長為2的正方體內有一個內切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內的線段的長為()A. B. C. D.110.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.11.在復平面內,復數z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數是()A. B. C. D.12.關于函數,下列說法正確的是()A.函數的定義域為B.函數一個遞增區間為C.函數的圖像關于直線對稱D.將函數圖像向左平移個單位可得函數的圖像二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且向量與的夾角為_______.14.某學校高一、高二、高三年級的學生人數之比為,現按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.15.的三個內角A,B,C所對應的邊分別為a,b,c,已知,則________.16.實數,滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新高考,取消文理科,實行“”,成績由語文、數學、外語統一高考成績和自主選考的3門普通高中學業水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.18.(12分)已知函數(為實常數).(1)討論函數在上的單調性;(2)若存在,使得成立,求實數的取值范圍.19.(12分)已知函數,.(1)若對于任意實數,恒成立,求實數的范圍;(2)當時,是否存在實數,使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.20.(12分)已知函數.(1)當時,求函數的圖象在處的切線方程;(2)討論函數的單調性;(3)當時,若方程有兩個不相等的實數根,求證:.21.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:22.(10分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先將函數解析式化簡為,結合題意可求得切點及其范圍,根據導數幾何意義,即可求得的值.【詳解】函數即直線與函數圖象恰有四個公共點,結合圖象知直線與函數相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數的圖像與性質的綜合應用,由交點及導數的幾何意義求函數值,屬于難題.2.D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.3.B【解析】
根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【點睛】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.4.B【解析】
分兩類:一類是醫院A只分配1人,另一類是醫院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫院A的情況分兩類:第一類:若醫院A只分配1人,則乙必在醫院B,當醫院B只有1人,則共有種不同分配方案,當醫院B有2人,則共有種不同分配方案,所以當醫院A只分配1人時,共有種不同分配方案;第二類:若醫院A分配2人,當乙在醫院A時,共有種不同分配方案,當乙不在A醫院,在B醫院時,共有種不同分配方案,所以當醫院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.5.D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.6.C【解析】
首先分析題目求用數學歸納法證明1+1+3+…+n1=n4【詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數學歸納法,屬于中檔題./7.D【解析】
根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.8.A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數中的誘導公式,屬于簡單題9.C【解析】
連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內的線段的長.【詳解】如圖,MN為該直線被球面截在球內的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.10.B【解析】
根據所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.11.A【解析】
由復數z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數可求.【詳解】解:∵復數z=i(i為虛數單位)在復平面中對應點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉得到,
設=(a,b),,則,即,
又,解得:,∴,對應復數為.故選:A.【點睛】本題考查復數的代數表示法及其幾何意義,是基礎題.12.B【解析】
化簡到,根據定義域排除,計算單調性知正確,得到答案.【詳解】,故函數的定義域為,故錯誤;當時,,函數單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數單調性,定義域,對稱,三角函數平移,意在考查學生的綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據向量數量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數量積的定義,屬于基礎題.14.【解析】
根據分層抽樣的定義建立比例關系即可得到結論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.15.【解析】
利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.16.10【解析】
畫出可行域,根據目標函數截距可求.【詳解】解:作出可行域如下:由得,平移直線,當經過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標函數最大值的求法,基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯;(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對高考了解的頻數,即可求出概率;(2)根據數據列出列聯表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據期望公式即可求解.【詳解】(1)由題中數據可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯.(3)年齡在的被調查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.18.(1)見解析(2)【解析】
(1)分類討論的值,利用導數證明單調性即可;(2)利用導數分別得出,,時,的最小值,即可得出實數的取值范圍.【詳解】(1),.當即時,,,此時,在上單調遞增;當即時,時,,在上單調遞減;時,,在上單調遞增;當即時,,,此時,在上單調遞減;(2)當時,因為在上單調遞增,所以的最小值為,所以當時,在上單調遞減,在上單調遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究函數的存在性問題,屬于中檔題.19.(1);(2)不存在實數,使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數為,引入新函數,利用導數求得函數最值即可;(2),導出導函數,問題轉化為在上有解.再用導數研究的性質可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數,恒成立.若,恒成立,即當時,,設,,當時,,則在上單調遞增,當時,,則在上單調遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設,則,當時,,故在上為增函數,因此在區間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數解.而,即方程無實數解.故不存在實數,使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導數的幾何意義,由導數幾何把問題進行轉化是解題關鍵.本題屬于困難題.20.(1);(2)當時,在上是減函數;當時,在上是增函數;(3)證明見解析.【解析】
(1)當時,,求得其導函數,,可求得函數的圖象在處的切線方程;(2)由已知得,得出導函數,并得出導函數取得正負的區間,可得出函數的單調性;(3)當時,,,由(2)得的單調區間,以當方程有兩個不相等的實數根,不妨設,且有,,構造函數,分析其導函數的正負得出函數的單調性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數,在上是增函數;(3)當時,,,由(2)得在上單調遞減,在單調遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數根,不妨設,且有,,構造函數,則,當時,所以,在上單調遞減,且,,由,在上單調遞增,.所以.【點睛】本題考查運用導函數求函數在某點的切線方程,討論函數的單調性,以及證明不等式,關鍵在于構造適當的函數,得出其導函數的正負,得出所構造的函數的單調性,屬于難度題.21.(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶第二師范學院《醫學生的情緒管理》2023-2024學年第二學期期末試卷
- 山東省臨沂市經濟技術開發區市級名校2024-2025學年初三下學期第一次月考(開學考試)英語試題含答案
- 蘇州托普信息職業技術學院《俱樂部經營管理》2023-2024學年第二學期期末試卷
- 浙江工商大學《文化活動方案策劃》2023-2024學年第一學期期末試卷
- (二模)呂梁市2025年高三第二次模擬考試語文試卷(含答案詳解)
- 企業競爭力問題-復雜系統分析
- 硬件產品的市場趨勢跟蹤考核試卷
- 禮儀用品制作工藝流程考核試卷
- 棉花倉儲庫存動態監控考核試卷
- 礦山機械材料力學性能與選材考核試卷
- 2025山西地質集團招聘37人筆試參考題庫附帶答案詳解
- 學校家庭教育指導(班主任培訓班) 課件
- 2022年上海汽車集團股份有限公司招聘筆試題庫及答案解析
- 移動餐車租賃合同
- 人教版七年級數學下冊《二元一次方程組》優質課說課課件
- 食用菌資源的開發及利用
- 幼兒園繪本故事:《再見電視機》 課件
- 三.國際法習題之經典案例分析
- 中國傳媒大學-輿論學原理、方法與應用-課件-第一章 輿論傳播的源與流
- 水下混凝土澆筑導管水密試驗
- 市政工程監理規劃范本(完整版)
評論
0/150
提交評論