2025屆黑龍江省綏化市安達第七中學高三第五次(1月)月考數學試題_第1頁
2025屆黑龍江省綏化市安達第七中學高三第五次(1月)月考數學試題_第2頁
2025屆黑龍江省綏化市安達第七中學高三第五次(1月)月考數學試題_第3頁
2025屆黑龍江省綏化市安達第七中學高三第五次(1月)月考數學試題_第4頁
2025屆黑龍江省綏化市安達第七中學高三第五次(1月)月考數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆黑龍江省綏化市安達第七中學高三第五次(1月)月考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件2.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題3.若數列滿足且,則使的的值為()A. B. C. D.4.若sin(α+3π2A.-12 B.-135.幻方最早起源于我國,由正整數1,2,3,……,這個數填入方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形數陣就叫階幻方.定義為階幻方對角線上所有數的和,如,則()A.55 B.500 C.505 D.50506.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③7.某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖,90后從事互聯網行業崗位分布條形圖,則下列結論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯網行業從業人員中90后占一半以上B.互聯網行業中從事技術崗位的人數超過總人數的C.互聯網行業中從事運營崗位的人數90后比80前多D.互聯網行業中從事技術崗位的人數90后比80后多8.已知函數,則函數的零點所在區間為()A. B. C. D.9.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln210.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.11.命題“”的否定為()A. B.C. D.12.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人同時參加公務員考試,甲筆試、面試通過的概率分別為和;乙筆試、面試通過的概率分別為和.若筆試面試都通過才被錄取,且甲、乙錄取與否相互獨立,則該次考試只有一人被錄取的概率是__________.14.在平面直角坐標系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是______.15.設等差數列的前項和為,若,,則數列的公差________,通項公式________.16.已知若存在,使得成立的最大正整數為6,則的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)11月,2019全國美麗鄉村籃球大賽在中國農村改革的發源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經過1輪投球,記甲的得分為,求的分布列;(2)若經過輪投球,用表示經過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規定,經過計算機計算可估計得,請根據①中的值分別寫出a,c關于b的表達式,并由此求出數列的通項公式.18.(12分)設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.19.(12分)已知函數.(1)解不等式;(2)若函數最小值為,且,求的最小值.20.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.21.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.22.(10分)已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于,兩點.(1)求拋物線的方程及點的坐標;(2)求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.2、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.3、C【解析】因為,所以是等差數列,且公差,則,所以由題設可得,則,應選答案C.4、B【解析】

由三角函數的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.5、C【解析】

因為幻方的每行、每列、每條對角線上的數的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數的和相等,所以階幻方對角線上數的和就等于每行(或每列)的數的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數陣問題,考查了學生邏輯推理,數學運算的能力,屬于中檔題.6、D【解析】

對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.7、D【解析】

根據兩個圖形的數據進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯網行業從業者年齡分別餅狀圖得到互聯網行業從業人員中90后占56%,所以是正確的;在B中,由整個互聯網行業從業者年齡分別餅狀圖,90后從事互聯網行業崗位分布條形圖得到:,互聯網行業從業技術崗位的人數超過總人數的,所以是正確的;在C中,由整個互聯網行業從業者年齡分別餅狀圖,90后從事互聯網行業崗位分別條形圖得到:,互聯網行業從事運營崗位的人數90后比80后多,所以是正確的;在D中,互聯網行業中從事技術崗位的人數90后所占比例為,所以不能判斷互聯網行業中從事技術崗位的人數90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統計圖表中餅狀圖和條形圖的性質等基礎知識的應用,著重考查了推理與運算能力,屬于基礎題.8、A【解析】

首先求得時,的取值范圍.然后求得時,的單調性和零點,令,根據“時,的取值范圍”得到,利用零點存在性定理,求得函數的零點所在區間.【詳解】當時,.當時,為增函數,且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數的零點所在區間為.故選:A【點睛】本小題主要考查分段函數的性質,考查符合函數零點,考查零點存在性定理,考查函數的單調性,考查化歸與轉化的數學思想方法,屬于中檔題.9、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.10、B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題11、C【解析】

套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.12、B【解析】

根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分別求得甲、乙被錄取的概率,根據獨立事件概率公式可求得結果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點睛】本題考查獨立事件概率的求解問題,屬于基礎題.14、【解析】

作出圖像,設點,根據已知可得,,且,可解出,計算即得.【詳解】如圖,設,圓心坐標為,可得,,,,,解得,,即的長是.故答案為:【點睛】本題考查直線與圓的位置關系,以及求平面兩點間的距離,運用了數形結合的思想.15、2【解析】

直接利用等差數列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數列的基本計算,意在考查學生的計算能力.16、【解析】

由題意得,分類討論作出函數圖象,求得最值解不等式組即可.【詳解】原問題等價于,當時,函數圖象如圖此時,則,解得:;當時,函數圖象如圖此時,則,解得:;當時,函數圖象如圖此時,則,解得:;當時,函數圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【點睛】本題主要考查了對勾函數的圖象與性質,函數的最值求解,存在性問題的求解等,考查了分類討論,轉化與化歸的思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析;(2)①;②,.【解析】

(1)經過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經過2輪后甲的得分的分布列(的取值為),然后結合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數列的遞推式,變形后得是等比數列,由等比數列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數列是等比數列,公比為,首項為,∴.∴.【點睛】本題考查隨機變量的概率分布列,考查相互獨立事件同時發生的概率,考查由數列的遞推式求通項公式,考查學生的轉化與化歸思想,本題難點在于求概率分布列,特別是經過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨立事件的概率公式計算出概率.18、(1);(2)證明見解析,.【解析】

(1)根據離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設,,聯立方程組利用韋達定理得到,,根據化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關于軸對稱,則直線與直線的斜率之和為零,與題設條件矛盾,故直線的斜率不為0.設,,直線的方程為聯立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關鍵,意在考查學生的計算能力和轉化能力.19、(1)(2)【解析】

(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據“的代換”的方法,結合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉化的數學思想方法,屬于中檔題.20、證明見解析;2.【解析】

利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點,使得,此時.【點睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎知識;考查空間想象能力、運算求解能力、推理論證能力和創新意識;考查化歸與轉化、函數與方程等數學思想,屬于難題.21、(1)曲線的直角坐標方程為,曲線的參數方程為為參數(2)【解析】

(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數方程為為參數.(2)由題可設,,,所以,,,所以,因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論