




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省學業考:專題二勻變速直線運動的研究復習試卷第二學期高三第二次模擬考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則()A. B. C. D.2.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.33.曲線在點處的切線方程為,則()A. B. C.4 D.84.已知正方體的棱長為1,平面與此正方體相交.對于實數,如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.5.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統計如圖中的條形圖,已知年的就醫費用比年的就醫費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元6.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a7.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從到的路徑中,最短路徑的長度為()A. B. C. D.28.如圖,內接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.9.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心10.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且11.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.12.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.40二、填空題:本題共4小題,每小題5分,共20分。13.變量滿足約束條件,則目標函數的最大值是____.14.某班有學生52人,現將所有學生隨機編號,用系統抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.15.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____16.已知函數,若關于的方程在定義域上有四個不同的解,則實數的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.18.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.19.(12分)已知函數.(1)當a=2時,求不等式的解集;(2)設函數.當時,,求的取值范圍.20.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.21.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.22.(10分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
結合指數函數及對數函數的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.2.A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.3.B【解析】
求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.4.B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.5.A【解析】
根據2018年的家庭總收人為元,且就醫費用占得到就醫費用,再根據年的就醫費用比年的就醫費用增加了元,得到年的就醫費用,然后由年的就醫費用占總收人,得到2019年的家庭總收人再根據儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫費用占所以就醫費用因為年的就醫費用比年的就醫費用增加了元,所以年的就醫費用元,而年的就醫費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.6.C【解析】
兩復數相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數的概念,屬于基礎題.7.B【解析】
首先根據題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據圓柱的三視圖以及其本身的特征,將圓柱的側面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.8.B【解析】
根據已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數關系,由基本不等式得最值,或由函數的性質得最值.9.B【解析】
解出,計算并化簡可得出結論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.10.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.11.A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.12.C【解析】
設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.5【解析】
分析:畫出可行域,平移直線,當直線經過時,可得有最大值.詳解:畫出束條件表示的可行性,如圖,由可得,可得,目標函數變形為,平移直線,當直線經過時,可得有最大值,故答案為.點睛:本題主要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的定點就是最優解);(3)將最優解坐標代入目標函數求出最值.14.18【解析】
根據系統抽樣的定義和方法,所抽取的4個個體的編號成等差數列,故可根據其中三個個體的編號求出另一個個體的編號.【詳解】解:根據系統抽樣的定義和方法,所抽取的4個個體的編號成等差數列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統抽樣的定義和方法,屬于簡單題.15.【解析】
雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.16.【解析】
由題意可在定義域上有四個不同的解等價于關于原點對稱的函數與函數的圖象有兩個交點,運用參變分離和構造函數,進而借助導數分析單調性與極值,畫出函數圖象,即可得到所求范圍.【詳解】已知定義在上的函數若在定義域上有四個不同的解等價于關于原點對稱的函數與函數f(x)=lnx-x(x>0)的圖象有兩個交點,聯立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數解決方程的根的問題,還考查了等價轉化思想與函數對稱性的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數的值域等,考查了學生運算求解能力.18.(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.19.(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.20.(1);(2)【解析】
(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數為,根據的范圍可確定的范圍,結合正弦函數圖象可確定所求函數的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數性質的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數值域的求解等知識.21.(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關系轉化為角的關系,有時需將角的關系轉化為邊的關系;解三角形問題常見的一種考題是“已知一條邊的長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 協議合同應該幾份
- 酒樓解除合同協議書
- 掛靠項目協議合同
- 解聘合同解約協議
- 員工入股合同協議
- 駐唱合同協議書
- 代采協議合同
- 技術合同延期協議
- 中美能源協議天然氣合同
- 租用服務器協議合同范本
- 5w2H分析法培訓教材課件
- 《神州謠》課件 部編版二下 寧夏銀川興慶三小 劉靜
- DGTJ08-2128-2021 軌道交通及隧道工程混凝土結構耐久性設計施工技術標準
- DB33∕1021-2013 城市建筑工程停車場(庫)設置規則和配建標準
- 中水、純水系統簡介
- 12 UG NX運動仿真基礎
- (完整版)10KV配電室安裝工程施工方案
- 邏輯思維訓練500題及答案
- 新安全生產法主要負責人和安全管理人員職責
- 1.鋁合金陽極氧化實用工藝及全參數理論指導
- 油庫工藝流程及設備一覽表
評論
0/150
提交評論