




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省孝義中學2024-2025學年高三下學期第五高考測評活動元月調考(期末)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.52.2019年10月17日是我國第6個“扶貧日”,某醫院開展扶貧日“送醫下鄉”醫療義診活動,現有五名醫生被分配到四所不同的鄉鎮醫院中,醫生甲被指定分配到醫院,醫生乙只能分配到醫院或醫院,醫生丙不能分配到醫生甲、乙所在的醫院,其他兩名醫生分配到哪所醫院都可以,若每所醫院至少分配一名醫生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種3.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.4.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是15.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了6.已知函數,關于的方程R)有四個相異的實數根,則的取值范圍是(
)A. B. C. D.7.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大8.定義在上的偶函數,對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.9.已知函數,則()A.2 B.3 C.4 D.510.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.11.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.912.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.14.根據如圖所示的偽代碼,輸出的值為______.15.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.16.已知復數(為虛數單位),則的模為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.18.(12分)已知數列滿足,且.(1)求證:數列是等差數列,并求出數列的通項公式;(2)求數列的前項和.19.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.20.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.21.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數據,繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數,求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結果)22.(10分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】試題分析:由已知,-2a+i=1-bi,根據復數相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復數的代數運算,復數相等的充要條件,復數的模2.B【解析】
分兩類:一類是醫院A只分配1人,另一類是醫院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫院A的情況分兩類:第一類:若醫院A只分配1人,則乙必在醫院B,當醫院B只有1人,則共有種不同分配方案,當醫院B有2人,則共有種不同分配方案,所以當醫院A只分配1人時,共有種不同分配方案;第二類:若醫院A分配2人,當乙在醫院A時,共有種不同分配方案,當乙不在A醫院,在B醫院時,共有種不同分配方案,所以當醫院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.3.B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.4.A【解析】
根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.5.C【解析】
假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.本題考查了邏輯推理能力,屬基礎題.6.A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,
當時,恒成立,時,單調遞增且,方程R)有四個相異的實數根.令=則,,即.7.C【解析】
,,判斷其在內的單調性即可.【詳解】解:根據題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.8.A【解析】
根據偶函數的性質和單調性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數所以在上遞減又因為,,所以故選:A考查偶函數的性質以及單調性的應用,基礎題.9.A【解析】
根據分段函數直接計算得到答案.【詳解】因為所以.故選:.本題考查了分段函數計算,意在考查學生的計算能力.10.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.11.A【解析】
先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.12.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規劃.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.14.7【解析】
表示初值S=1,i=1,分三次循環計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環:S=1+1=2,i=1+2=3;第二次循環:S=2+3=5,i=3+2=5;第三次循環:S=5+5=10,i=5+2=7;S=10>9,循環結束,輸出:i=7.故答案為:7本題考查在程序語句的背景下已知輸入的循環結構求輸出值問題,屬于基礎題.15.【解析】
設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、常考題型.16.【解析】,所以.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)將代入函數的解析式,將函數的及解析式變形為分段函數,利用二次函數的基本性質可求得函數的值域;(2)由參變量分離法得出在區間內有解,分和討論,求得函數的最大值,即可得出實數的取值范圍.【詳解】(1)當時,.當時,;當時,.函數的值域為;(2)不等式等價于,即在區間內有解當時,,此時,,則;當時,,函數在區間上單調遞增,當時,,則.綜上,實數的取值范圍是.本題主要考查含絕對值函數的值域與含絕對值不等式有解的問題,利用絕對值的應用將函數轉化為二次函數,結合二次函數的性質是解決本題的關鍵,考查分類討論思想的應用,屬于中等題.18.(1)證明見解析,;(2).【解析】
(1)將等式變形為,進而可證明出是等差數列,確定數列的首項和公差,可求得的表達式,進而可得出數列的通項公式;(2)利用錯位相減法可求得數列的前項和.【詳解】(1)因為,所以,即,所以數列是等差數列,且公差,其首項所以,解得;(2),①,②①②,得,所以.本題考查利用遞推公式證明等差數列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.19.(1)詳見解析;(2)詳見解析.【解析】
(1)連結根據中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.本題主要考查了線面平行與垂直的判定,屬于基礎題.20.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.21.(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】
(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;(3)由圖表直接判斷結果.【詳解】(1)100名學生中共有男生48名,其中共有20人參加公益勞動時間在,設男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,那么;(2)的所有可能取值為0,1,2,3.∴;;;.∴隨機變量的分布列為:(3)由圖表可知,初中生平均參加公益勞動時間較長.本小題主要考查古典概型的計算,考查超幾何分布的分布列的計算,屬于基礎題.22.(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年音樂作品委托創作合同改編
- 餐飲廢油回收合同范本
- 農土租賃合同范本
- 合同范本哪里查真偽
- 購買茶葉協議合同范本
- 抗震配件銷售合同范本
- 養殖合作回收合同范本
- 2025裝修設計委托合同范本
- 2025成都市租房合同范本下載
- 2025年股權質押借款合同模板
- 抗日英雄人物楊靖宇介紹
- AI驅動的可持續能源發展
- 【博觀研究院】2025年跨境進口保健品市場分析報告
- 整本書閱讀《林海雪原》【知識精研】六年級語文下冊 (統編版五四制2024)
- 牛奶的工藝流程
- 土地勘測定界技術方案
- 健康日用品設計與研發趨勢
- 【化學】常見的鹽(第1課時)-2024-2025學年九年級化學下冊(人教版2024)
- 公園物業管理
- 新人教版初中英語七至九年級全部課本單詞
- 宜賓市新能源產業有限公司招聘筆試沖刺題2025
評論
0/150
提交評論