




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第3講數的開方與二次根式1.了解:平方根、算術平方根、立方根、二次根式的概念與性質.2.掌握:二次根式的化簡及二次根式的四則運算和混合運算.1.平方根與立方根的求值.2.二次根式的混合運算.課標要求考向瞭望
結合近幾年中考試題分析,二次根式的內容考查有以下特點:1.命題方式為二次根式的化簡與運算,常常結合分式的化簡求值題目進行考查,題型以填空題、解答題為主;2.命題熱點為二次根式性質的運用,二次根式的運算,利用(a≥0)確定自變量的取值范圍.
1.二次根式的概念與性質是二次根式化簡的依據,也是二次根式運算的基礎與關鍵,因此,在復習時要弄清二次根式的概念的內涵與外延.2.二次根式的化簡與運算是中考熱點之一,應通過各種形式的題目進行訓練.此類題目往往含有一定的技巧性,并多與實數的運算結合在一起.一個數x的________等于a,那么x叫做a的立方根立方根一個正數x的________等于a,則x叫做a的算術平方根,記作.0的算術平方根是0算術平方根一個數x的______等于a,那么x叫做a的平方根,記作±平方根數的開方考點1平方根、算術平方根與立方根平方平方立方知識考點一
求平方根、算術平方根與立方根
例1.(1)[2013·資陽]
16的平方根是()A.1個B.2個C.3個D.4個(2)(-2)2的算術平方根是()A.2B.±2C.-2D.(3)[2010·江西]的算術平方根是()A.9B.±9C.3D.-3BAC知識考點二
二次根式的有關概念【例1】.(2010·茂名中考)若代數式有意義,則x的取值范圍是()(A)x>1且x≠2(B)x≥1(C)x≠2(D)x≥1且x≠2【解析】選D.要使代數式有意義,必須同時滿足x-1≥0,x-2≠0兩個條件,解得x≥1且x≠2.2.(2011·上海中考)下列二次根式中,最簡二次根式是()(A)(B)(C)(D)【解析】選C.選項A、B根號中有分母,選項D的被開方數50=52×2.1.(a≥0)具有雙重非負性,一是a≥0,二是≥0.2.中的a可以是任意實數,而中的a必須是非負數,當a<0時,沒有意義.3.如果被開方數中有的因式能夠開得盡方,可以利用公式把開得盡方的因式用它的算術平方根代替移到根號外面.知識考點三
二次根式的性質【例2】(2010·廣州中考)若a<1,化簡()(A)a-2(B)2-a(C)a(D)-a【解析】選D.根據公式=|a|可知:=|a-1|-1,由于a<1,所以a-1<0,因此|a-1|-1=(1-a)-1=-a.1.在被開方數相乘時,可先考慮因式分解或因數分解,避免運算繁雜.2.實數運算中的運算律、運算法則及所有的乘法公式,在二次根式的運算中仍然適用.3.二次根式相乘(除),將被開方數相乘(除),所得的積(商)仍作積(商)的被開方數,并將運算結果化為最簡二次根式.知識考點二二次根式的運算【例3】(2011·聊城中考)化簡:=_____.【思路點撥】【自主解答】答案:9.(2011·孝感中考)下列計算正確的是()(A)(B)(C)(D)A【例】(2011·涼山中考)已知,則2xy的值為()(A)-15(B)15(C)(D)【解析】選A.由可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村畜牧業生產與疫情防控責任合同
- 固定支架租賃合同
- 石油化工行業生產安全規范指南
- 藥物治療基礎復習測試卷含答案
- 新能源汽車租憑合同協議書
- 3 《自己之歌》公開課一等獎創新教案統編版高中語文選擇性必修中冊
- 《世界經濟的全球化》戰后世界格局的演變課件-3
- 上海店鋪合租合同范本
- 辦公集裝購買合同范本
- 房車大白轉讓合同范本
- 養老院安全知識培訓
- 簡單夫妻自愿離婚協議書范本
- 打擊違法犯罪工作總結
- 1000以內退位減法500道
- 制氧機實施方案
- 煤炭行業的信息化與智能化轉型
- 醫療器械臨床試驗質量管理規范培訓
- 中小學語文教師教學培訓核心素養下的整本書閱讀教學培訓課件如何教好孩子閱讀
- 《院感基本知識》課件
- 急診科培訓急性腰痛的鑒別與處理
- 血管外科疾病的診斷和治療
評論
0/150
提交評論