




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省貴陽市普通高中2025年高三第二學期質量調研考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數的圖象,只需將函數的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度2.已知集合,,若AB,則實數的取值范圍是()A. B. C. D.3.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變4.已知拋物線,F為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.5.若,則函數在區間內單調遞增的概率是()A.B.C.D.6.已知數列中,,(),則等于()A. B. C. D.27.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40408.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.9.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}10.在中,,,,為的外心,若,,,則()A. B. C. D.11.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.12.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足,且恒成立,則的值為____________.14.若存在直線l與函數及的圖象都相切,則實數的最小值為___________.15.函數在上的最小值和最大值分別是_____________.16.若函數,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數的值;(2)試討論函數零點的個數.18.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.19.(12分)已知數列滿足.(1)求數列的通項公式;(2)設數列的前項和為,證明:.20.(12分)在直角坐標系中,曲線的參數方程為(為參數).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.21.(12分)[2018·石家莊一檢]已知函數.(1)若,求函數的圖像在點處的切線方程;(2)若函數有兩個極值點,,且,求證:.22.(10分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數滿足.證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據三角函數圖像的變換與參數之間的關系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點睛】本題考查三角函數圖像的平移,涉及誘導公式的使用,屬基礎題.2、D【解析】
先化簡,再根據,且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.3、D【解析】
由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題4、A【解析】
根據可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.5、B【解析】函數在區間內單調遞增,,在恒成立,在恒成立,,函數在區間內單調遞增的概率是,故選B.6、A【解析】
分別代值計算可得,觀察可得數列是以3為周期的周期數列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數列是以3為周期的周期數列,
,
,
故選:A.【點睛】本題考查數列的周期性和運用:求數列中的項,考查運算能力,屬于基礎題.7、D【解析】
計算,代入等式,根據化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.8、D【解析】
根據空間向量的線性運算,用作基底表示即可得解.【詳解】根據空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.9、C【解析】
根據集合的并集、補集的概念,可得結果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎題.10、B【解析】
首先根據題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.11、B【解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.12、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
易得,所以是等差數列,再利用等差數列的通項公式計算即可.【詳解】由已知,,因,所以,所以數列是以為首項,3為公差的等差數列,故,所以.故答案為:【點睛】本題考查由遞推數列求數列中的某項,考查學生等價轉化的能力,是一道容易題.14、【解析】
設直線l與函數及的圖象分別相切于,,因為,所以函數的圖象在點處的切線方程為,即,因為,所以函數的圖象在點處的切線方程為,即,因為存在直線l與函數及的圖象都相切,所以,所以,令,設,則,當時,,函數單調遞減;當時,,函數單調遞增,所以,所以實數的最小值為.15、【解析】
求導,研究函數單調性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數在函數最值的求解中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題16、【解析】
根據題意,由函數的解析式求出的值,進而計算可得答案.【詳解】根據題意,函數,則,則;故答案為:.【點睛】本題考查分段函數的性質、對數運算法則的應用,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)答案不唯一具體見解析【解析】
(1)利用導數的幾何意義,設切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質為同一條,從而得到方程組,再構造函數研究其最大值,進而求得;(2)對函數進行求導后得,對分三種情況進行一級討論,即,,,結合函數圖象的單調性及零點存在定理,可得函數零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調遞增,在上單調遞減,∴,于是,.(2),①當時,恒成立,在上單調遞增,且,∴函數在上有且僅有一個零點;②當時,在R上沒有零點;③當時,令,則,即函數的增區間是,同理,減區間是,∴.ⅰ)若,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當時,單調遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當時,函數沒有零點;當或時,函數恰有一個零點;當時,恰有兩個零點.【點睛】本題考查導數的幾何意義、切線方程、零點等知識,求解切線有關問題時,一定要明確切點坐標.以導數為工具,研究函數的圖象特征及性質,從而得到函數的零點個數,此時如果用到零點存在定理,必需說明在區間內單調且找到兩個端點值的函數值相乘小于0,才算完整的解法.18、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【點睛】本題考查證明線面垂直,解題時注意線面垂直與線線垂直的相互轉化.考查求二面角,求空間角一般是建立空間直角坐標系,用向量法易得結論.19、(1);(2)見解析.【解析】
(1)令,,利用可求得數列的通項公式,由此可得出數列的通項公式;(2)求得,利用裂項相消法求得,進而可得出結論.【詳解】(1)令,,當時,;當時,,則,故;(2),.【點睛】本題考查利用求通項,同時也考查了裂項相消法求和,考查計算能力與推理能力,屬于基礎題.20、(1)();(2)【解析】
(1)由已知,曲線的參數方程消去t后,要注意x的范圍,再利用普通方程與極坐標方程的互化公式運算即可;(2)設,,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因為,設,,則,,.【點睛】本題考查參數方程、普通方程、極坐標方程間的互化,考查學生的計算能力,是一道容易題.21、(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結合函數的單調性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數有兩個極值點,當變化時,,的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區間上單調遞增,.另解:由已知可得,則,令,則,可知函數在單調遞增,在單調遞減,若有兩個根,則可得,當時,,所以在區間上單調遞增,所以.22、(1)或;(2)見解析【解析】
(1)根據,利用零點分段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 今年高三語文作文
- 石油化工產品加工工藝考核試卷
- 紙質寵物用品市場推廣與營銷策略案例分析考核試卷
- 搶救車的管理和使用
- 5-3同步計數器的分析1-公式法
- 河南省漯河市2023~2024學年高一數學下學期5月月考試題含答案
- 河北省石家莊市2024-2025學年高一下學期第一次段考數學試題【含答案】
- 統編版語文五年級下冊第3課《月是故鄉明》精美課件
- 山東省鄒城市2025年初三3月月考化學試題文試題含解析
- 蘭州財經大學《影視創意寫作》2023-2024學年第一學期期末試卷
- 生物化學-脂類課件
- 二方審核計劃
- Q∕SY 02098-2018 施工作業用野營房
- DB62∕T 3176-2019 建筑節能與結構一體化墻體保溫系統應用技術規程
- 優秀病例演講比賽PPT
- 吉林省礦產資源概況及分布
- 公司員工基本禮儀培訓ppt完整版課件
- 八大特殊危險作業危險告知牌
- 半橋LLC諧振變換器設計與仿真
- 啟閉機及閘門安裝后檢驗說明
- 保監〔2005〕22號標準
評論
0/150
提交評論