




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆高考數學二輪復習專題訓練空間幾何體
本試卷滿分150分,考試時間120分鐘。
注意事項:
1.答題前,務必將自己的姓名、班級、考號填寫在答題卡規定的位置上。
答選擇題時,必須使用2B鉛筆將答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦
2.擦干凈后,再選涂其它答案標號。
3.答非選擇題時,必須使用0.5毫米黑色簽字筆,將答案書寫在答題卡規定的位置上。
4.所有題目必須在答題卡上作答,在試題卷上答題無效。
一、單項選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選
項中,只有一個選項是正確的.請把正確的選項填涂在答題卡相應的位置上.
1.如圖,一個圓臺形狀的杯子的杯底厚度為1cm,杯內的底部半徑為3cm,當杯子盛滿水時,杯子
上端的水面直徑為12cm,且杯子的容積為2527151?,則該杯子的高度為()
A.12cmB.13cmC.14cmD.15cm
2.若A3CD-AgG。為正方體,則異面直線BQ與CD1所成角的大小為()
兀兀一兀兀
A.—B.—C.—D.—
3428
3.三棱錐p—ABC的體積為18/,△ABC和△尸都是等邊三角形,ZPBA=ZPCA^90^
則三棱錐P—ABC的外接球的表面積為()
436兀B.54兀C,7271D.1O871
4.兩個邊長為4的正三角形△ABC與△A8D,沿公共邊A5折疊成60。的二面角,若點A,B,C,
。在同一球O的球面上,則球。的表面積為()
80兀-208兀〃64兀112K
A.------B.--------C.------D.-------
5.如圖,正方體A3CD-A耳的棱長為2,AD的中點為E,則下列說法不正確的是()
Q
TT四面體的體積是
A.直線D}C和BC]所成的角為:B.BDG41
4J3D.Q到直線BE的距離為半
C.點&到平面BEC1的距離為上
6.在棱長為6的正方體ABCD—A4G2中,AE=2E^>CF=2FQ>過點8,E,E的平面
截該正方體所得截面的周長為()
A-4V13+3V2B-6713+372C.4g+80D-6A/13+8A/2
7.在多面體ABC-DEF中,已知ADHBEHCF,且它們兩兩之間的距離為4.若
4£>=2,5石=4,。?=6,則該多面體的體積為()
A*B.8用16°苧D.24g_16
8.如圖,在三棱柱43。一4四。]中,CG,平面ABC」AB=BC=CA=2,Cq=J,,則三棱柱
ABC—的體積為()
C-2aD-3亞
二、多項選擇題:本大題共3小題,每小題6分,共18分.在每小題給出的四個選
項中,有多項符合題目要求.全部選對得6分,選對但不全的得部分分,有選錯的得0
分.
9.如圖,在直三棱柱A5C—4用£中,AC=BC=1,A4=2,。是棱AA】的中點,DC,1BD,
點E在BB]上,且3用=4BE,則下列結論正確的是()
A.直線DC】與BC所成角為90。
B.三棱錐。―3CG的體積為:
D.直三棱柱ABC-4月£外接球的表面積為6兀
10.已知正四棱臺ABCD-A4GA(上下底面都是正方形的四棱臺)下底面A8CO邊長為2,上
底面邊長為1,側棱長為正,貝)
A.它的表面積為5+3小
B.它的外接球的表面積為還兀
3
C.側棱與下底面所成的角為60。
D.它的體積比棱長為正的正方體的體積大
11.如圖是正方體的平面展開圖,則在這個正方體中,下列命題正確的是()
A.AM//BNB.BFLDN
CCE=MED.AM與DF是異面直線
三、填空題:本大題共3小題,每小題5分,共15分.
12.已知正四棱臺上底面邊長為夜,下底面邊長為2夜,側棱與底面所成角為45。,則該正四棱臺
的體積為.
13.中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但
南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多
邊形圍成的多面體.半正多面體體現了數學的對稱美.圖2是一個棱數為48的半正多面體,它的所有頂
點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體的棱長為.
圖1圖2
14.設地球的半徑為R,若A在北緯30。的緯線圖上,則此緯線圈構成的小圓面積為.
(結果用R表示)
四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.
15.設拋物線C:/=2py(p>0),過點Af(0,4)的直線與C交于A,B兩點,且QA±05-若拋物線C
的焦點為£記△A05,AAOF的面積分別為S.A0B,S.AOF.
(1)求S^AOB+2sAAOF的取小值,
(2)設點D(LT卜直線AD與拋物線C的另一交點為瓦求證:直線BE過定點?
(3)我國古代南北朝數學家祖曬所提出的祖曬原理是“事勢既同,則積不容異",即:夾在兩個平行平面
間的兩個幾何體被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個
幾何體的體積相等.當△A05為等腰直角三角形時,記線段A3與拋物線圍成的封閉圖形為①,。
繞y軸旋轉半周形成的曲面所圍成的幾何體為Q.試用祖桓原理的數學思想求出Q的體積.
16.如圖,在四棱錐P—ABCD中,上4,底面ABC。,BC//AD,ABLBC,PA=AB=s/2,
AD=2BC=2,/是的中點.
P
(1)求證:CM〃平面E4B;
(2)求三棱錐P-ACM的體積;
⑶求二面角"—AC—D的余弦值.
17.己知一個等邊三角形的邊長為°,這個等邊三角形繞其一邊所在的直線旋轉一周,求所得旋轉體
的表面積和體積.
18.有一個正四棱臺形狀的油槽,最多裝油190L,已知它的兩底面邊長分別為60cm和40cm,
求它的深度.
19.過正四棱臺各側棱中點的截面稱為正四棱臺的中截面.若正四棱臺的兩底面邊長分別為3和5,求
它的中截面的面積.
參考答案
1.答案:B
解析:當杯子盛滿水時,該杯子中水的高度為〃cm,
則杯子的容積為1/i(32+3x6+6?)=21兀丸=252兀,
可得力=12,
所以該杯子的高度為12+1=13cm.
故選:B
2.答案:A
解析:連接AC,如下圖:
易知BG”AD\,所以NARC為異面直線BO1與CD]所成的角(或其補角),
TT
易知△AC。1為等邊三角形,所以=
13
故選:A.
3.答案:C
解析:
P
B
取AP的中點O,因為NPB4=ZPC4=90°,連接08,0C>所以O3=OC=^AP=OA=OP,
2
O三棱錐p-ABC的外接球的球心,
因為△ABC和△PBC都是等邊三角形,設BC=AB=AC=PB=PC=t,
因為06LAP,OCX.AP^03noe=O,OB,OCu平面OB。,
所以AP,平面OBC,
所以AP=0廣OB=OC=縣,BC=t>OB2+OC--BC21所以△OfiC是直角三角形;
2
又因為%ABC=上義S^OBCXAP=上義L義顯t義昱txjit=18近,
r-ADC3ZAC/DC3222
所以/=6,。3=克/=3后,所以外接球的表面積為5=4兀0§2=72兀?
2
故選:C.
4.答案:B
解析:取A5的中點E,連接CE,DE
因為正三角形△ABC與△A3。的邊長為4,
所以。CAB,CE1AB,
且。E=CE=26,
故NCED為二面角D—A5—C的平面角,ZCED=60°,
所以△(?£)£是等邊三角形,
取CE的中點F,連接。/,則£CE,CF=6,DF=^CF=3,
因為。ELAB,CE±AB,DE^CE=E,
DE,CEu平面CDE,
所以AB,平面CDE,
因為。尸u平面CDE,所以D尸,A3,
因為ABCCE=E,AB,CEu平面ABC,
所以小,平面ABC,
取△ABC的中心G,則點G在CE上,
24J3
且CG=2EG,故CG=—CE=^^,
33
則球心。在G點正上方,連接。O,OG,OC
過點。作OKLDE于點K,
則OK=GF=^—6=B,
33
設GO=/i,DO=CO=R,則GO=bK=/z,
i,
由勾股定理得。。2=OK?+OK2=§+(3—無y,
OC-=GO2+CG2=h2+
192
故§+(3W解得/?=一,
3
故外接球半徑R2=52
~9
故球0的表面積為4nR-=3皿
9
故選:B
5.答案:C
解析:建立如圖所示空間直角坐標系。盯z,
則。(0,0,0),5(2,2,0),C(0,2,0),
A(0,0,2),A(2,0,2),4(222),G(0,2,2),£(1,0,0)
對于A,B?C=(0,2,-2),5G=(—2,0,2)
,—?—?-41
故cos<C,BQ>=—-----尸——,
2V2x2V22
----------?27r
故v℃5G>=可,
TT
即直線AC和BC]所成的角為三,故A正確;
對于B,易得四面體BOCA為正四面體,
][8
則=%BCD-AB1Goi=8-4x—x—x2x2x2=—,故B正確;
對于C,M=(0,—2,2),麗=(1,2,0),Bq=(-2,0,2)
設平面BEG的法向量為為=(x,y,z),
則{n_L_EB.,有<n-_EB.=x+2y=0
n_LBQn-BCX=-2x+2z=0
令x=2,則為=(2,—1,2),
故點&到平面BEC,的距離d=?網川=包&=2,故C錯誤;
\n\3
對于D,麗=(1,2,0),BQ=(-2,0,2)
丫
、.--->1----?BE1c/-2+0+0述
則G到直線5石的距離為,BG-BC故D正確.
\〔r7(網=YJru^)
故選:C
6.答案:B
解析:如圖取DC1的中點N,2A的中點M,連接MN、NF、ME,
則五邊形8上建\丁為過點3,E,尸的截面,取b的中點J,靠近D1的三等分點左,連接DJ、
CK、EK,
則NE〃DJ,又CJ/ID[K豆CJ=DR,所以四邊形C/2K為平行四邊形,
所以CK/RJ,則NF//CK,
又£K〃BC且EK=6C,所以EKCB為平行四邊形,所以EB//CK,
則NF//BE,所以MF,B,E四點共面;
取5用、A4]靠近夙A的三等分點G、H,連接CQ、GH、RH,
同理可證BR〃GG,D[HgG,D[HHEM,所以BF//EM,
所以8,F,M,E四點共面;
所以N,F,B,E,M五點共面;
又NF=ME=d方+乎=岳,BE=BF=y/42+61=2713)
MN=732+32=3-72'所以截面周長為6而+3萬
故選:B
7.答案:A
解析:如圖所示,用一個完全相同的多面體£)EP-Gm與多面體ABC-DEF組合;
因為ADHBE//CF,所以AG//BH//CI,又AD=2,BE=4,CF=6,
則£>0=6,皿=4,77=2,從而AG=BH=CI=8,
因為AG//BH,AG=,所以四邊形ABHG為平行四邊形,則GH//AB,
又GHU平面ABC,A3u平面ABC,所以GH〃平面ABC,
同理可得,HIH平面ABC,又印nGH=H,所以平面ABC//平面GHI,
所以組合體ABC-GHI是一個三棱柱,又AGBHCI兩兩之間的距離為4,
不妨將三棱柱A5C—Gm看作直三棱柱(側棱與底面垂直),
所以AB=5C=AC=4,
此時三棱柱ABC-Gm的高AG=8,S&c\M"Cxsin600=46'
所以匕BCDEF=~^ABCCHI~~,AG=—X4^3X8=16^/3,
故選:A.
8.答案:B
解析:?.?CC],平面A3G,
CC}1AG,CC11BG,
-,-AB=BC=CA=2CC,=行,
.?.AG=BCi=V4^2=V2,
.?.△AGB是等腰直角三角形,
???^,=^^.5q=1x72x72=1,
'.匕棱錐G-ABC=七棱錐c-ABG=§xCC|-SAABG=§x行xl=
所以V=3V-3x0-,
故選:B.
9.答案:ABD
解析:對于A,在矩形ACG4中,
因為44=2,AC=1,。是棱441的中點,
所以CD=qD=血,
所以=。弓2,
所以CD_LG。,
又因。£_L5D,BDC\CD=D,
所以DG,平面BCD,
又因5Cu平面BCD,
所以£>G
即直線與BC所成角為90。,故A正確;
對于B,在直三棱柱ABC—A§iG中,CG,5C,
又DGJ.3C,DC,HCQ=Q,
所以BC,平面。CG,
又。Cu平面DCG,所以。C,5C,
則/BCC=ZBCD=-x-xV2xlxV2=-,故B正確;
對于C,由AB可知,AC,BC,cq兩兩垂直,
如圖,以c為原點建立空間直角坐標系,
則3(0,1,0),0(1,0,1),
則屈=1o,l,g],BD=(1,-1,1)
—.—.11
所以"5。=—1+—=——wO,
22
所以CE,不垂直,
所以CE不垂直平面故C錯誤;
連接,則線段即為直三棱柱ABC-AAC外接球的直徑,
45=&+1+4=逐,所以外接球的半徑R=手,
所以直三棱柱ABC-43G外接球的表面積為4旃2=6兀,故D正確.
故選:ABD.
z
10.答案:ACD
解析:由題意得:上底面4與GA的面積H=ixi=i,
下底面ABCD的面積S[=2x2=4,
側面ABB14為等腰梯形,過4、耳分別做AB的垂線,
垂足為E、F,如圖所示
所以ER=44=1,則AE=3/
所以B.F=J叫2一3尸=[,
所以梯形的面積為S3=gx(l+2)x[=乎,
所以正四棱臺ABC。—A4GA的表面積8=4+82+4x83=5+36,故A正確;
連接AG,耳2,且交于點a,
連接AC、8。交于點。2,連接。。2,
則。1。2垂直底面ABCD,
過-作AG±AO2于G,則AjG1底面ABCD,
則四邊形AGaa為矩形,
由題意得AG=個AB*B[C;=V2,
72
所以aa二手,
同理AC=2后,AO2=72
又A0\=G()2=%,所以AG=事
AG|
在Rt^AjGA中,cos/LAiAG=..=,
所以NAAG=60。,即側棱與下底面所成的角為60。,故C正確
連接GQ,在RtAQOjOj中,GQ=dOQ:+CQ:=拒,
所以點。2到A,B,C,D,A1,Bx,G,2的距離相等,均為血,
所以點。2即為正四棱臺ABCD-A.B.QD,外接球的球心,且外接球半徑R=后,
所以外接球的表面積S'=4TTX(收了=8兀,故B錯誤;
正四棱臺的體積K=;X(S]+S2+#X)XO]Q,
=gx(l+4+gx冬普
棱長為V2的正方體的體積乂=(A/2)3=2夜,
776
所以尹嘉=嚕1147
—>1,所以匕>匕,
所以正四棱臺ABC。-A4G。的體積比棱長為夜的正方體的體積大,故D正確;
故選:ACD
11.答案:ABC
解析:還原正方體,畫出正方體的直觀圖,如圖EEM0-ABCD,
由圖可知,川以與是相交直線,D錯誤;
設正方體的棱長為則CE=AfE=,C正確;
由正方體的性質可得AB與MN平行且相等,所以ABMW是平行四邊形,可得AM//BN,A正確;
由正方體的性質可得與平行且相等,所以是平行四邊形,可得CM//BF,在正方形
CDMN中,CMLDN,所以BFJ_0N,B正確,
故選:ABC.
如圖,點S,。分別為上下底面的中心,連接OS,
在正四棱臺中,有OS_£平面ABCD,
又OSu平面AAC£,所以平面AACC;,平面ABCD,
在平面AACC1內,過點A作AC于點E,
又平面AACGPl平面ABC。=AC,所以4E,平面ABC。,
所以AE是AA,在平面ABCD上的射影,
所以N^AE是直線AA1與平面ABCD所成角的平面角,
又側棱與底面所成角為45。,所以NAAE=45。,
因為上底面邊長為正,下底面邊長為2&,所以AS=1,40=2,
則0E=AS=l,AE=OA-OE=1>所以AE=AE=1,則四棱臺的高為1,
所以該正四棱臺的體積為:x(2+8+4)xl=苫.
故答案為:11.
3
13.答案:、舊—1
解析:作出該圖形的一個最大的水平截面正八邊形A3CDEFGW,如圖,其八個頂點都在邊長為1的
正方形上,設“半正多面體”棱長為〃,貝IJYZ〃X2+〃=1,解得Q=亞_1,
2~
故答案為:、歷
14.答案:3兀.
4
解析:如圖所示:
則點A所在小圓半徑「=R?cos30°=—R,
2
所以小圓的面積為S=nr2=史族■
4
故答案為:3兀五~.
4
15.答案:(1)8瓜;
(2)證明見解析;
⑶32K-
解析:⑴設義%,%),*%,%>直線/:y=丘+4,
由<'2區+4消去y整理得九2一22日_8P=0,再%2=—8pj%=3-?2=16,
x-2py2p2p
由Q4_L05,得MW+X%=0,16—82=0,解得p=2,即^x2=-8p=-16,
SAAOB+2s△AOF=;義IOM|X|X]—馬I+2義;*|O耳義H
=3|X1|+2|X2|=3|X1|+^>2A/3X32=8A/6,
lxll
當且僅當x;=學時等號成立,所以+2S^AOF最小值為876?
(2)設£(七,為卜則直線AE的斜率kAE=,方程為y+4=Y1(XT),
2
X=4y2
X+4
由(1)知拋物線c:%2=4丫,由<y+4z、消去y得工+4=X
'y+4=^—(x-1)4%—1
、%1-1
整理得K±3x+*"+16=0,顯然玉+七=江±3,七七=上3+16,
再-1再_1玉_1X]-1
于是玉+退+16=X1X3,又X]%2=-16,聯立消去再,得入2兄3+16(%2+%3)—16=。,
設直線BE:y=k,x+m,與拋物線聯立=4^,整理得:f_4匕x—4根=0,
y=k2x+m
x2x3=-4m,x2+%3=4k2,因止匕一4加+64k2—16=0,m=16k2—4,
直線y=k2x+16k2-A恒過定點(-16,-4).
(3)作底面半徑為4、高為4的圓柱,并將內部切割去掉o之后,上下翻轉得到幾何體中,
現做一平面,使其平行于Q和O的底面,且被兩幾何體分別截得如圖中陰影所示截面,
在圖1的幾何體O中,設風為,坊),即45=%,4。=%,4。=4—%,且%=4%,
則圖2的幾何體中中,有£7=4—%,由拋物線方程得1=4(4—%)=16—4%=16—%,
則圖2中截面圓環面積S,=兀(4?—/f)=套,而圖1中截面圓面積S1=廚,
由祖眶原理可得,O和0的體積相等,均為圓柱體積的一半,即%=;兀氏2丸=;兀*42*4=32兀.
16.答案:(1)證明見解析
1
⑵3
⑶
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級信息技術上冊 第7課 裝扮美麗的花園教學設計 粵教版
- 人教版(2024)五年級下冊因數和倍數教學設計
- 人教版(2024)七年級2025年10.1 二元一次方程組的概念教案配套
- 公司員工花名冊
- 人教版一年級音樂上冊教學計劃教案
- 六年級下冊心理健康教育教案-16.學畫思維導圖 蘇科版
- 七年級生物下冊 第四單元 第七章 第一節 分析人類活動對生態系統的影響教學設計2 (新版)新人教版
- 2024吉林鎮賚縣鑫陽新能源有限公司招聘工作人員5人筆試參考題庫附帶答案詳解
- 體育教學設計(單杠和仰臥起坐)
- 人教部編版八年級上冊法不可違教案配套
- 遼寧省部分示范性高中2025屆高三下學期4月模擬聯合調研數學試題(無答案)
- 二零二五協警聘用合同范文
- 防雷安全知識培訓課件
- 政務服務人員培訓
- 寵物醫院招聘課件
- 2024年山東司法警官職業學院招聘考試真題
- 2025建筑安全員C證考試(專職安全員)題庫及答案
- 安全標識(教學設計)-2024-2025學年浙美版(2012)美術四年級下冊
- 環境保護部華南環境科學研究所(廣州)2025年上半年招考人員易考易錯模擬試題(共500題)試卷后附參考答案
- 2024-2025學年七年級下冊歷史 【教學課件】第10課《金與南宋的對峙》
- 滁州地鐵筆試試題及答案
評論
0/150
提交評論