




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省邢臺市橋西區邢臺八中高三下學期期中統考數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是等差數列的前n項和,且,則()A. B. C.1 D.22.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設集合,,則()A. B.C. D.4.設為非零實數,且,則()A. B. C. D.5.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.6.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.7.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸8.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或99.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.10.已知橢圓內有一條以點為中點的弦,則直線的方程為()A. B.C. D.11.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.12.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知函數,則不等式的解集為____________.14.(5分)某膳食營養科研機構為研究牛蛙體內的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.15.數列滿足遞推公式,且,則___________.16.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數列的前n項和為,,是與的等比中項.(1)求;(2)設數列滿足,,求數列的通項公式.18.(12分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.19.(12分)記為數列的前項和,N.(1)求;(2)令,證明數列是等比數列,并求其前項和.20.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.21.(12分)已知,,,.(1)求的值;(2)求的值.22.(10分)如圖,三棱柱的側棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.2、C【解析】
作出韋恩圖,數形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關系及充要條件,注意數形結合方法的應用,屬于基礎題.3、D【解析】
利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.4、C【解析】
取,計算知錯誤,根據不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.5、D【解析】
利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.6、B【解析】
設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.7、A【解析】
根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.8、C【解析】
由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.9、B【解析】
設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.10、C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內點差法求直線方程,意在考查學生的計算能力和應用能力.11、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.12、A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題.對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的性質以及題目中的代數的關系建立方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
易知函數的定義域為,且,則是上的偶函數.由于在上單調遞增,而在上也單調遞增,由復合函數的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增.令,知,則不等式可化為,即,可得,又,是偶函數,可得,由在上單調遞增,可得,則,解得,故不等式的解集為.14、【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.15、2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數列遞推式和累加法的應用,屬于基礎題16、【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數原理;1.古典概型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎題.18、見解析【解析】
(1)當時,函數,其定義域為,則,設,,易知函數在上單調遞增,且,所以當時,,即;當時,,即,所以函數在上單調遞減,在上單調遞增,所以函數在處取得極小值,為,無極大值.(2)由題可得函數的定義域為,,設,,顯然函數在上單調遞增,當時,,,所以函數在內有一個零點,所以函數有且僅有一個零點;當時,,,所以函數有且僅有一個零點,所以函數有且僅有一個零點;當時,,,因為,所以,,又,所以函數在內有一個零點,所以函數有且僅有一個零點.綜上,函數有且僅有一個零點.19、(1);(2)證明見詳解,【解析】
(1)根據,可得,然后作差,可得結果.(2)根據(1)的結論,用取代,得到新的式子,然后作差,可得結果,最后根據等比數列的前項和公式,可得結果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數列是首項為,公比為的等比數列所以【點睛】本題主要考查遞推公式以及之間的關系的應用,考驗觀察能力以及分析能力,屬中檔題.20、(1)的極坐標方程為,的直角坐標方程為(2)【解析】
(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.21、(1)(2)【解析】
(1)先利用同角的三角函數關系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數值求值,考查三角函數的化簡,考查和角公式,二倍角公式,同角的三角函數關系的應用,考查運算能力.22、(1)詳見解析;(2).【解析】
(1)根據平面,四邊形是矩形,由為中點,且,利用平面幾何知識,可得,又平面,所以,根據線面垂直的判定定理可有平面,從而得證.(2)分別以,,為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆湖北省孝感市漢川市第二中學高三一診考試英語試卷含答案
- 2025年云南省昆明市祿勸縣一中高考英語二模試卷含答案
- 初級消防設施操作員習題庫及答案
- 分析化學練習題庫(含答案)
- 海洋石油鉆探的深海地質調查進展考核試卷
- 電氣機械設備施工安裝考核試卷
- 繼續拓展調味品與發酵制品相關主題考核試卷
- 電力設備維護與保養管理考核試卷
- 玻璃行業生產過程中的能源管理考核試卷
- 航標反射器設計原理考核試卷
- 刑事案件模擬法庭劇本完整版五篇
- 2022年高考全國I卷數學高考真題(原卷版)
- 《商務英語閱讀》教學大綱
- 會計學畢業論文8000字-會計學論文范文8000字
- 小學教育畢業論文6000字范文
- 《愛心樹》-經典繪本省名師優質課賽課獲獎課件市賽課一等獎課件
- 初級家政服務員培訓烹飪篇課件
- 西游記搞笑劇本【五篇】
- 初中物理-第十二章簡單機械復習課教學課件設計
- 第七章聚乙烯醇纖維
- 職業暴露針刺傷應急預案演練腳本-
評論
0/150
提交評論