




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版九年級數學下冊第二十七章相似單元復習題
一'單選題
1.下列四組線段中,不是成比例線段的是(
A.a=3,b—6,c=2,d=4B.a=l,b=V2,c=y/3,d=\/6
C.a=2,Z?=4,c=6,d=8D.a=2,b=y/5,c=2y/3,d=y/15
2.如圖,直線/J&IE,直線AC和被444所截,AB=5,AC=11,EF=4,則。石的長為
3.已知。:/?=6:4,且線段。是。、c的比例中項,那么c:。為()
A.4:6B.2:3C.3:2D.2:1
4.如圖,在AABC中,D、E分別為AB、AC邊上的點,DE〃BC,點F為BC邊上一點,連接AF交
DE于點G,則下列結論中一定正確的是()
ADAEAGAEAGACBDCE
A___________B.-D.-----------
.ABECGFBD~\F~~ECADAE
5.如圖,在等邊三角形ABC中,BC=6,且BD=2,點P是邊BC上一動點(D、P兩點均不與端點重
合),作“?E=60。,PE交邊AC于點E.若CE=a,當滿足條件的點P有且只有一個時,則”的值為
A
139
A.4B.—C.—D.5
32
6.如圖,在AABC中,ZA=36°,AB=AC,以點8為圓心任意長為半徑畫弧,分別交A3,BC于
點N,再分別以點N為圓心,大于的長為半徑畫弧,兩弧交于點。,連接80,并延
2
長交AC于點。,若AB=2逐,則的長為()
A.5-75B.345-5C.5+加D.375+5
7.如圖,以線段AB為邊作正方形ABCD,取AD的中點E,連接5E,延長。1至F,使得
EF=BE,以A/為邊作正方形AFGH,則點H即是線段AB的黃金分割點.若記正方形AFGH的面積
為S1,矩形3c田的面積為邑,則航與S2的大小關系是()
A.$1>邑B.5]<邑C.,=S2D.不能確定
8.如圖,在平行四邊形ABCD中,E是3。的中點,則下列四個結論:①AM=CN;②若
MD=AM,NA=90°,則=③若A4D=2AM,則S0NE=S2”;④若AB=MN,則
△MFN與xDFC全等.其中正確結論的個數為()
A.1個B.2個C.3個D.4個
9.如圖,在AABC中,AB=AC,以AB為直徑作圓,交BC于點。,延長CA交圓于點E,連結
DE,交AB于點尸.若AF:BF=1:4,貝UEF:DF的值為()
A.3:5B.2:3C.3:4D.1:2
10.如圖,在正方形ABCD中,點。是對角線的中點,點P在線段OD上,連接AP并延長交
于點E,過點P作P尸_LAP交于點P,連接AF,EF,AF交BD于G,給出下面四個結論:①
AB2+BF2=2AP--@BF+DE=EF;@PB-PD<2BF;@FC+EC>42PG-上述結論中,
所有正確結論的序號是()
A.①②③B.①②④C.①③④D.②③④
二'填空題
11.如圖所示,已知AB〃EF〃CD,AC,BD相交于點E,AB=3cm,CD=6cm,貝ljEF=
12.已知,如圖,E是平行四邊形ABC。的邊氏4延長線上一點,CE與相交于點歹,若
AB=2AE,且AAER的面積為2,則平行四邊形ABCD的面積為
E
13.如圖,在矩形ABCD中,AB=4,BC=5,E點為BC邊延長線一點,且CE=3.連接AE交邊
CD于點F,過點D作于點H,則
14.如圖,在等邊三角形ABC的AC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相
交于點0.若50=6,尸0=2,則AP的長為,A0的長為.
三'解答題
15.如圖,在AABC中,ZB=90°,AB=5cm,3C=7cm,點P從點A開始向點B以lcm/s的速度
移動,點Q從點B開始沿邊向點C以2cm/s的速度移動,當P、Q兩點中有一點到達終點時,則同
時停止運動.
(1)如果P、Q分別從A、B同時出發,那么經過幾秒時,△PBQ的面積等于4cm2?
(2)如果P、Q分別從A、B同時出發,那么經過幾秒時,PQ的長度等于5cm?
(3)幾秒鐘后,△依。與“WC相似?
16.一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖
1,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC±.
(1)求證:AAEFS/\ABC;
(2)求這個正方形零件的邊長;
(3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?
17.如圖,四邊形ABC。/四邊形AB'C'。'.
(1)求a的度數;
(2)求邊x的長度.
18.如圖,在矩形ABCD中,點E為射線上一動點,連接AE.將AABE沿AE翻折,使點8落在
點歹處,AE交于點G.
FF
(1)如圖1,當點E在邊上,點R在BD邊上時,若AB=3,BE=5/3,求?口的值;
(2)如圖2,當點E在邊上,點尸在BD邊上時,若A5=4,且EF=EC時,求3尸的長;
(3)如圖3,當點E在線段的延長線上,將AABE沿AE翻折后,EF恰好經過點。,當
AB=4,BC=4后時,求。G的長.
13
19.如圖1,在平面直角坐標系中,拋物線丁=:f--x-4與x軸交于A、B兩點,與,軸交于點C.
42
(2)如圖2,若點P在以點。為圓心,長為半徑作的圓上,連接5P、CP,請你直接寫出
+的最小值.
2
四'綜合題
20.如圖,點D在以AB為直徑的。。上,過點D作。。的切線,交AB的延長線于點C,AELCD于
點E,交。O于點F,連結AD,FD.求證:
(1)ZDAE=ZDAC.
(2)DFAC=ADCD.
21.如圖,反比例函數y=K(x>0)的圖象與直線y=4x交于點m),在射線OD上取一點A,過
點A作y軸的垂線分別交反比例函數的圖象和丁軸于點B和點c.
(1)求反比例函數的解析式;
(2)當AZ)=200時,
①求點A的坐標;
②求AOBD的面積.
22.深河某景區內建有供游客休息的涼亭(如圖1).某數學小組欲測量涼亭的高度,故抽象出圖2的平
面幾何圖形,已知點D,A,E在地面的同一水平線上,ZC=90°,AC=2.5米,BC=3米,點C到
地面的距離是2.4米.求涼亭最高點B到地面的距離的長,(結果精確到0.1米)
B
曲y卦I
圖1圖2
23.如圖,在等腰△ABC中,AB=BC,點D是AC上一點,以CD為直徑的。0過點B,連接BD,且
ZCAB=ZDBA,NDBC的平分線BE交。0于點E,交AC于點F,連接DE.
(1)求證:AB與。0相切.
(2)求證:ADEF^ABED.
(3)已知DA=2,求BE-EF的值.
答案解析部分
1.【答案】C
2.【答案】D
3.【答案】C
4.【答案】D
5.【答案】C
6.【答案】B
7.【答案】C
8.【答案】C
9.【答案】B
【解析】【解答】解:如圖,連接0D,
?:OB=OD,AB=AC,
ZB=NODB=NC,
:.OD^AC,
EFAF
"~DF~^F'
AF:BF=1:4,OB=OA,
?.A?F..—2―,
OF3
???EF_一2.
DF3
故答案為:B.
FFAF
【分析】連接OD,易證OD||AC,利用平行線的性質得到而=而,進而求得DF的值.
10.【答案】A
1L【答案】2cm
12.【答案】24
13.【答案】亞
14.【答案】4;1+^/13
【解析】【解答】解:?「△ABC是等邊三角形,
.-.AB=AC=BC,ZABC=ZBAC=ZC=60°,
:.ZBAQ+ZQAC^60°,
■:AP=CQ,
:.AABP=ACAQ(SAS),
ZABP=ZCAQ,BP=AQ,
ZAOP=ZBAQ+ZABP=ZBAQ+ZQAC=60°,ZQBO=ZBAQ,
:.ZAOP=ZBAC,
.,.△AOP~ABAP,
OPAPOA
,AP-BP-ABJ
\-BO=6,PO=2,
:.AQ=BP=BO+OP=8,
AP2=OPBP=16,
.-.AP=4,
—=—=-,CQ=AP=4,
ABAP2
設OA=尤,則A3=2x,OQ=8—x,
/.BQ—BC—CQ—2x—4,
<NQBO=/BAQ,ZBQO=ZBQA,
:.△BQO~AAQB,
,OQ=BQ
"BQ~AQJ
2
.-.(2X-4)=8(8-X),解得x=l-屈(舍去),X2=1+A/13,
AO=1+V13.
故答案為:4;1+^/13-
【分析】由等邊三角形的性質可得AB=AC,ZBAC=ZC=60°,再通過SAS判定進
而證得NABP=NCAQ,然后利用三角形外角的性質求得/49P=60°,即可證得△49P?AB4P,由
r)A1
相似三角形的性質求得AP的長度及上-=—,設。4=尤,則A3=2x,OQ=8—%,3Q=2x—4,由
AB2
/。60=284。判定獨。0f4。星通過相似三角形的性質列出方程(2x—4)2=8(8—無),解得
x=l+而,即可得到A。的長度.
15.【答案】(1)1秒
(2)2秒
「、35T25
(3)t=——或——
1719
16.【答案】(1)證明見試題解析;(2)48;(3)2400.
17.【答案】(1)解:?.?四邊形ABCQs四邊形AB'C'。',
ZA=ZA'=62°,ZB=NB'=75°.
,-.a=360°-62°-75°-140°=83°.
(2)解::?四邊形ABCDs四邊形AB'C'D',
BCADX9
即土=',解得x=12.
B'C'~A!D'86
【解析】【分析】(1)根據相似圖形的性質及四邊形內角和進行解答即可;
(2)根據相似圖形的對應邊成比例進行解答即可.
18.【答案】(1)見
3
⑵蟲I
3
⑶166-4碗
7
19.【答案】⑴A(-2,0),5(8,0),C(0,M)
(2);CP+BP的最小值為相
20.【答案】(1)證明:如圖,連接OD,
???CE是。O的切線,
ODLCE,
-.-AE±CD,
:.OD\\AE,
:.ZDOB=ZAEB,
-.■ZDOB=2ZDAB,
:.ZAEB=2ZDAB,
:.ZDAE=ZDAC.
(2)證明:如圖,連接BF,
vZE=ZAFB=90°,
BF||CF,
:.ZC=ZABF,
?:ZABF=ZADF,
:.ZADF=ZC,
-.■ZDAE=ZDAC,
.'.^AFD~AAZ)C,
DFAD
,CD-AC'
:.DFAC=ADCD.
【解析】【分析】(D利用切線的定義可證得OD||AE,進而通過平行線的性質可得"06=再
利用圓周角定理得到=進而證得=2NZMB,故可得NZME=NZMC.
(2)利用圓周角定理證得得到NC=/W=NA。/,進而證得AAKD?△ADC,再利用相似
三角形的性質得到——=—,故可得DRAC=AD-CD.
CDAC
21.【答案】⑴解:把。(1,m)代入y=4%中,m=4xl=4,
???。(1,4)把。(1,4)代入〉=或得,k=xy=4,
X
4
...反比例函數的解析式為y=—
x
(2)解:①過點。作垂足為石;OCLAC,/.DE\\OC
,AEAD
,AC-AO
?:CE=1,AD=2OD,..AC=3,?.點A(3,12)
AC3
②設點5(〃⑵,.?.12=±n=-,
n3<3J
SOBD=SABO—S=-XABX12--XABX(12-4)
△Ut5L)△ADCZA/AIDBZDJ22、,
【解析】【分析】(1)利用待定系數法將求得k的值,即可求解;
A/7AF)
(2)①過點。作DELAC,垂足為E;OC±AC,根據平行線分線段成比例得到「=二大,結合
已知條件求得AC=3,即可得到點A的坐標;②設點B(n,12),根據反比例函數圖象上的點的坐標特點
求得n的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 俱樂部人員轉讓協議書
- 項目銷售代理協議書
- 車輛托管合同協議書
- 餐具合同解除協議書
- 餐飲分紅股份協議書
- 車輛事故賠付協議書
- 高架施工補償協議書
- Brand KPIs for second-hand apparel online shops Garimpário Brechó Online in Brazil-外文版培訓課件(2025.2)
- 餐廳股份收購協議書
- 車輛買賣無責協議書
- 設計合作月結協議書
- 溴素行業分析報告
- 泰康之家管理體系
- 2025年浙江省金華市義烏市六年級下學期5月模擬預測數學試題含解析
- 高壓均質及熱處理改性鷹嘴豆蛋白對減磷豬肉糜凝膠特性的影響機制
- 人效提升方案
- 2025春-新版一年級語文下冊生字表(200個)
- 期末易錯題型創新改編練習(專項練習)六年級下冊數學人教版
- 2025年四川成都道德與法制中考試卷(無)
- 2024年不動產登記代理人《地籍調查》考試題庫大全(含真題、典型題)
- 中醫基礎學題庫(附答案)
評論
0/150
提交評論