




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第五章第1講[A級基礎達標]1.設a是非零向量,λ是非零實數,下列結論中正確的是()A.a與λa的方向相反 B.a與λ2aC.|-λa|≥|a| D.|-λa|≥|λ|·a【答案】B【解析】對于A,當λ>0時,a與λa的方向相同,當λ<0時,a與λa的方向相反,B正確;對于C,|-λa|=|-λ||a|,由于|-λ|的大小不確定,故|-λa|與|a|的大小關系不確定;對于D,|λ|a是向量,而|-λa|表示長度,兩者不能比較大小.2.(2016屆邯鄲二模)如圖所示,在正六邊形ABCDEF中,eq\o(BA,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(EF,\s\up6(→))=()A.0 B.eq\o(BE,\s\up6(→)) C.eq\o(AD,\s\up6(→)) D.eq\o(CF,\s\up6(→))【答案】D【解析】由圖知eq\o(BA,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(EF,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AF,\s\up6(→))+eq\o(CB,\s\up6(→))=eq\o(CB,\s\up6(→))+eq\o(BF,\s\up6(→))=eq\o(CF,\s\up6(→)).3.(2017屆福州質量檢測)在△ABC中,eq\o(AD,\s\up6(→))=2eq\o(DC,\s\up6(→)),eq\o(BA,\s\up6(→))=a,eq\o(BD,\s\up6(→))=b,eq\o(BC,\s\up6(→))=c,則下列等式成立的是()A.c=2b-a B.c=2a-b C.c=eq\f(3a,2)-eq\f(b,2) D.c=eq\f(3b,2)-eq\f(a,2)【答案】D【解析】依題意得eq\o(BD,\s\up6(→))-eq\o(BA,\s\up6(→))=2(eq\o(BC,\s\up6(→))-eq\o(BD,\s\up6(→))),eq\o(BC,\s\up6(→))=eq\f(3,2)eq\o(BD,\s\up6(→))-eq\f(1,2)eq\o(BA,\s\up6(→))=eq\f(3,2)b-eq\f(1,2)a,故選D.4.(2017屆溫州八校檢測)已知平面內一點P及△ABC,若eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→)),則點P與△ABC的位置關系是()A.點P在線段AB上 B.點P在線段BC上C.點P在線段AC上 D.點P在△ABC外部【答案】C【解析】由eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→)),得eq\o(PA,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(PB,\s\up6(→))=eq\o(AP,\s\up6(→)),即eq\o(PC,\s\up6(→))=eq\o(AP,\s\up6(→))-eq\o(PA,\s\up6(→))=2eq\o(AP,\s\up6(→)),所以點P在線段AC上.5.已知點O為△ABC外接圓的圓心,且eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,則△ABC的內角A等于()A.30° B.60° C.90° D.120°【答案】B【解析】由eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,知點O為△ABC的重心,又O為△ABC外接圓的圓心,∴△ABC為等邊三角形,A=60°.6.如圖所示,已知AB是圓O的直徑,點C,D是半圓弧的兩個三等分點,eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,則eq\o(AD,\s\up6(→))=()A.a-eq\f(1,2)b B.eq\f(1,2)a-b C.a+eq\f(1,2)b D.eq\f(1,2)a+b【答案】D【解析】連接CD,由點C,D是半圓弧的三等分點,得CD∥AB且eq\o(CD,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))=eq\f(1,2)a,所以eq\o(AD,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(CD,\s\up6(→))=b+eq\f(1,2)a.7.向量e1,e2不共線,eq\o(AB,\s\up6(→))=3(e1+e2),eq\o(CB,\s\up6(→))=e2-e1,eq\o(CD,\s\up6(→))=2e1+e2,給出下列結論:①A,B,C共線;②A,B,D共線;③B,C,D共線;④A,C,D共線,其中所有正確結論的序號為________.【答案】④【解析】由eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(CB,\s\up6(→))=4e1+2e2=2eq\o(CD,\s\up6(→))且eq\o(AB,\s\up6(→))與eq\o(CB,\s\up6(→))不共線,可得A,C,D共線且B不在此直線上.8.(2015年北京)在△ABC中,點M,N滿足eq\o(AM,\s\up6(→))=2eq\o(MC,\s\up6(→)),eq\o(BN,\s\up6(→))=eq\o(NC,\s\up6(→)).若eq\o(MN,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→)),則x=________;y=________.【答案】eq\f(1,2)-eq\f(1,6)【解析】由題中條件得,eq\o(MN,\s\up6(→))=eq\o(MC,\s\up6(→))+eq\o(CN,\s\up6(→))=eq\f(1,3)eq\o(AC,\s\up6(→))+eq\f(1,2)eq\o(CB,\s\up6(→))=eq\f(1,3)eq\o(AC,\s\up6(→))+eq\f(1,2)(eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)))=eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(1,6)eq\o(AC,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→)),所以x=eq\f(1,2),y=-eq\f(1,6).9.已知向量a=2e1-3e2,b=2e1+3e2,其中e1,e2不共線,向量c=2e1-9e2,問是否存在這樣的實數λ,μ,使向量d=λa+μb與c共線?【解析】∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,要使d與c共線,則應有實數k,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,即eq\b\lc\{\rc\(\a\vs4\al\co1(2λ+2μ=2k,,-3λ+3μ=-9k,))得λ=-2μ.故存在這樣的實數λ,μ,只要λ=-2μ,就能使d與c共線.10.如圖,四邊形ABCD是一個等腰梯形,AB∥DC,M,N分別是DC,AB的中點,已知eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(DC,\s\up6(→))=c,試用a,b,c表示eq\o(BC,\s\up6(→)),eq\o(MN,\s\up6(→)),eq\o(DN,\s\up6(→))+eq\o(CN,\s\up6(→)).【解析】eq\o(BC,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(DC,\s\up6(→))=-a+b+c.因為eq\o(MN,\s\up6(→))=eq\o(MD,\s\up6(→))+eq\o(DA,\s\up6(→))+eq\o(AN,\s\up6(→)),eq\o(MN,\s\up6(→))=eq\o(MC,\s\up6(→))+eq\o(CB,\s\up6(→))+eq\o(BN,\s\up6(→)),所以2eq\o(MN,\s\up6(→))=eq\o(MD,\s\up6(→))+eq\o(MC,\s\up6(→))+eq\o(DA,\s\up6(→))+eq\o(CB,\s\up6(→))+eq\o(AN,\s\up6(→))+eq\o(BN,\s\up6(→))=-eq\o(AD,\s\up6(→))-eq\o(BC,\s\up6(→))=-b-(-a+b+c)=a-2b-c.所以eq\o(MN,\s\up6(→))=eq\f(1,2)a-b-eq\f(1,2)c.eq\o(DN,\s\up6(→))+eq\o(CN,\s\up6(→))=eq\o(DM,\s\up6(→))+eq\o(MN,\s\up6(→))+eq\o(CM,\s\up6(→))+eq\o(MN,\s\up6(→))=2eq\o(MN,\s\up6(→))=a-2b-c.[B級能力提升]11.已知點O,A,B不在同一條直線上,點P為該平面上一點,且2eq\o(OP,\s\up6(→))=2eq\o(OA,\s\up6(→))+eq\o(BA,\s\up6(→)),則()A.點P在線段AB上 B.點P在線段AB的反向延長線上C.點P在線段AB的延長線上 D.點P不在直線AB上【答案】B【解析】因為2eq\o(OP,\s\up6(→))=2eq\o(OA,\s\up6(→))+eq\o(BA,\s\up6(→)),所以2eq\o(AP,\s\up6(→))=eq\o(BA,\s\up6(→)).所以點P在線段AB的反向延長線上,故選B.12.設a,b不共線,eq\o(AB,\s\up6(→))=2a+pb,eq\o(BC,\s\up6(→))=a+b,eq\o(CD,\s\up6(→))=a-2b,若A,B,D三點共線,則實數p的值是()A.-2 B.-1 C.1 D.【答案】B【解析】∵eq\o(BC,\s\up6(→))=a+b,eq\o(CD,\s\up6(→))=a-2b,∴eq\o(BD,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=2a-b.又A,B,D三點共線,∴eq\o(AB,\s\up6(→)),eq\o(BD,\s\up6(→))共線.設eq\o(AB,\s\up6(→))=λeq\o(BD,\s\up6(→)),∴2a+pb=λ(2a-b).∴2=2λ,p=-λ.∴λ=1,p=-1.13.O是平面上一定點,A,B,C是平面上不共線的三個點,動點P滿足:eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|)+\f(\o(AC,\s\up6(→)),|\o(AC,\s\up6(→))|))),λ∈[0,+∞),則P的軌跡一定通過△ABC的()A.外心 B.內心 C.重心 D.垂心【答案】B【解析】如圖,作∠BAC的平分線AD.∵eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|)+\f(\o(AC,\s\up6(→)),|\o(AC,\s\up6(→))|))),∴eq\o(AP,\s\up6(→))=λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|)+\f(\o(AC,\s\up6(→)),|\o(AC,\s\up6(→))|)))=λ′·eq\f(\o(AD,\s\up6(→)),|\o(AD,\s\up6(→))|)(λ′∈[0,+∞)).∴eq\o(AP,\s\up6(→))=eq\f(λ′,|\o(AD,\s\up6(→))|)·eq\o(AD,\s\up6(→)).∴eq\o(AP,\s\up6(→))∥eq\o(AD,\s\up6(→)).∴P的軌跡一定通過△ABC的內心.14.設G為△ABC的重心,且sinA·eq\o(GA,\s\up6(→))+sinB·eq\o(GB,\s\up6(→))+sinC·eq\o(GC,\s\up6(→))=0,則角B的大小為()A.45° B.60° C.30° D.15°【答案】B【解析】∵G是△ABC的重心,∴eq\o(GA,\s\up6(→))+eq\o(GB,\s\up6(→))+eq\o(GC,\s\up6(→))=0,eq\o(GA,\s\up6(→))=-(eq\o(GB,\s\up6(→))+eq\o(GC,\s\up6(→))),將其代入sinA·eq\o(GA,\s\up6(→))+sinB·eq\o(GB,\s\up6(→))+sinC·eq\o(GC,\s\up6(→))=0,得(sinB-sinA)eq\o(GB,\s\up6(→))+(sinC-sinA)eq\o(GC,\s\up6(→))=0.又eq\o(GB,\s\up6(→)),eq\o(GC,\s\up6(→))不共線,∴sinB-sinA=0,sinC-sinA=0,則sinB=sinA=sinC.根據正弦定理知b=a=c,∴△ABC是等邊三角形,則角B=60°.故選B.15.若點O是△ABC所在平面內的一點,且滿足|eq\o(OB,\s\up6(→))-eq\o(OC,\s\up6(→))|=|eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))-2eq\o(OA,\s\up6(→))|,則△ABC的形狀為________.【答案】直角三角形【解析】eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))-2eq\o(OA,\s\up6(→))=(eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→)))+(eq\o(OC,\s\up6(→))-eq\o(OA,\s\up6(→)))=eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→)),eq\o(OB,\s\up6(→))-eq\o(OC,\s\up6(→))=eq\o(CB,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)),∴|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|.故A,B,C為矩形的三個頂點,△ABC為直角三角形.16.(2016年廣州調研)已知△ABC和點M滿足eq\o(MA,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(MC,\s\up6(→))=0,若存在實數m使得eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))=meq\o(AM,\s\up6(→))成立,則m=________.【答案】3【解析】由已知條件得eq\o(MB,\s\up6(→))+eq\o(MC,\s\up6(→))=-eq\o(MA,\s\up6(→)),如圖,延長AM交BC于D點,則D為BC的中點.延長BM交AC于E點,延長CM交AB于F點,同理可證E,F分別為AC,AB的中點,即M為△ABC的重心,∴eq\o(AM,\s\up6(→))=eq\f(2,3)eq\o(AD,\s\up6(→))=eq\f(1,3)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))),即eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))=3eq\o(AM,\s\up6(→)),則m=3.17.若a,b是兩個不共線的非零向量,則當t為何值時,共起點的三向量a,tb,eq\f(1,3)(a+b)的終點在同一條直線上?【解析】設eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=tb,eq\o(OC,\s\up6(→))=eq\f(1,3)(a+b),∴eq\o(AC,\s\up6(→))=eq\o(OC,\s\up6(→))-eq\o(OA,\s\up6(→))=-eq\f(2,3)a+eq\f(1,3)b,eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→))=tb-a.要使A,B,C三點共線,只需eq\o(AC,\s\up6(→))=λeq\o(AB,\s\up6(→)),即-eq\f(2,3)a+eq\f(1,3)b=λ(tb-a)=λtb-λa.∵a與b為不共線的非零向量,∴有eq\b\lc\{\rc\(\a\vs4\al\co1(-\f(2,3)=-λ,,\f(1,3)=λt))?eq\b\lc\{\rc\(\a\vs4\al\co1(λ=\f(2,3),,t=\f(1,2).))∴當t=eq\f(1,2)時,三向量終點在同一直線上.18.已知O,A,B是不共線的三點,且eq\o(OP,\s\up6(→))=meq\o(OA,\s\up6(→))+neq\o(OB,\s\up6(→))(m,n∈R).(1)若m+n=1,求證:A,P,B三點共線;(2)若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新泰市三上數學期末聯考試題含解析
- 前沿技術2025年執業醫師考試試題及答案
- 常用藥物劑型選用原則試題及答案
- 2025年自考行政管理專科領導力與試題答案
- 行政管理專業語言能力試題及答案
- 2025年執業護士考試的社區護理重要性與試題及答案
- 2025年衛生資格考試人際溝通技巧試題及答案
- 護士自我提升試題及答案解析
- 執業醫師考試反向學習法探討試題及答案
- 2025年文化評估試題及答案
- 2025年湖北省漢江國有資本投資集團有限公司招聘筆試參考題庫含答案解析
- 萵筍育苗合同協議
- 2025年高考政治三輪沖刺復習:統編版選擇性必修3《邏輯與思維》開放類主觀題 提分刷題練習題(含答案)
- 電鍍車間廠房合同協議
- 森林火災后生態恢復的策略探討
- 2025-2030中國戰斗機行業市場發展趨勢與前景展望戰略研究報告
- 大學英語四級考試2024年12月真題(第一套)Part I Writing
- 吡侖帕奈產品簡介
- 高處作業力學基礎知識
- 洗煤廠應急救援預案
- 幼兒園科學發現室環境布置設計方案
評論
0/150
提交評論