2025屆浙江省寧波市達標名校高三下學期大聯考卷Ⅱ數學試題試卷_第1頁
2025屆浙江省寧波市達標名校高三下學期大聯考卷Ⅱ數學試題試卷_第2頁
2025屆浙江省寧波市達標名校高三下學期大聯考卷Ⅱ數學試題試卷_第3頁
2025屆浙江省寧波市達標名校高三下學期大聯考卷Ⅱ數學試題試卷_第4頁
2025屆浙江省寧波市達標名校高三下學期大聯考卷Ⅱ數學試題試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省寧波市達標名校高三下學期大聯考卷Ⅱ數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.i是虛數單位,若,則乘積的值是()A.-15 B.-3 C.3 D.152.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.3.設全集,集合,,則()A. B. C. D.4.已知復數(為虛數單位,),則在復平面內對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.6.在中,內角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.7.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數列,且,則橢圓的離心率為A. B. C. D.8.集合的真子集的個數是()A. B. C. D.9.若函數有且僅有一個零點,則實數的值為()A. B. C. D.10.已知集合,,則集合的真子集的個數是()A.8 B.7 C.4 D.311.已知集合,則()A. B. C. D.12.已知集合,則集合的非空子集個數是()A.2 B.3 C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知,則________.(填“>”或“=”或“<”).14.的展開式中的系數為________.15.已知是等比數列,且,,則__________,的最大值為__________.16.對定義在上的函數,如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,,時,總有成立.則稱函數稱為G函數.若是定義在上G函數,則實數a的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網絡知識問卷調查,每一位學生家長僅有一次參加機會,現對有效問卷進行整理,并隨機抽取出了200份答卷,統計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調查的得分服從正態分布,其中近似為這200人得分的平均值(同一組數據用該組區間的中點值作為代表).(1)請利用正態分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據以上數據估計此次活動可能贈送出多少話費?附:①;②若;則,,.18.(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.19.(12分)對于給定的正整數k,若各項均不為0的數列滿足:對任意正整數總成立,則稱數列是“數列”.(1)證明:等比數列是“數列”;(2)若數列既是“數列”又是“數列”,證明:數列是等比數列.20.(12分)設函數其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導函數在區間上存在零點,證明:當時,.21.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.22.(10分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】,∴,選B.2、D【解析】

建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據軌跡方程構造不等關系求得最值.3、D【解析】

求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.4、B【解析】

分別比較復數的實部、虛部與0的大小關系,可判斷出在復平面內對應的點所在的象限.【詳解】因為時,所以,,所以復數在復平面內對應的點位于第二象限.故選:B.【點睛】本題考查復數的幾何意義,考查學生的計算求解能力,屬于基礎題.5、D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數量積的應用,考查基本不等式的應用,屬于中檔題.6、A【解析】

根據正弦定理可得,求出,根據平方關系求出.由兩端平方,求的最大值,根據三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數量積運算,屬于中檔題.7、D【解析】

如圖所示,設依次構成等差數列,其公差為.根據橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.8、C【解析】

根據含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.9、D【解析】

推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.10、D【解析】

轉化條件得,利用元素個數為n的集合真子集個數為個即可得解.【詳解】由題意得,,集合的真子集的個數為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數問題,屬于基礎題.11、B【解析】

計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.12、C【解析】

先確定集合中元素,可得非空子集個數.【詳解】由題意,共3個元素,其子集個數為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數為,非空子集有個.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數式比較大小,涉及到換底公式的應用,考查學生的數學運算能力,是一道中檔題.14、80.【解析】

只需找到展開式中的項的系數即可.【詳解】展開式的通項為,令,則,故的展開式中的系數為80.故答案為:80.【點睛】本題考查二項式定理的應用,涉及到展開式中的特殊項系數,考查學生的計算能力,是一道容易題.15、5【解析】,即的最大值為16、【解析】

由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數,所以對任意的總有,則對任意的恒成立,解得,當時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:【點睛】本題是一道函數新定義題目,考查了不等式恒成立求參數的取值范圍,考查了學生分析理解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)估計此次活動可能贈送出100000元話費【解析】

(1)根據正態分布的性質可求的值.(2)設某家長參加活動可獲贈話費為元,利用題設條件求出其分布列,再利用公式求出其期望后可得計此次活動可能贈送出的話費數額.【詳解】(1)根據題中所給的統計表,結合題中所給的條件,可以求得又,,所以;(2)根據題意,某家長參加活動可獲贈話費的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費;得分不低于平均值,2次均獲贈10元話費,概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費,另一次獲贈20元話費,其概率為,得40元的其情況得分不低于平均值,兩次機會均獲20元話費,概率為.所以變量的分布列為:某家長獲贈話費的期望為.所以估計此次活動可能贈送出100000元話費.【點睛】本題考查正態分布、離散型隨機變量的分布列及數學期望,注意與正態分布有關的計算要利用該分布的密度函數圖象的對稱性來進行,本題屬于中檔題.18、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.19、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數列,由等比數列的性質可得:即可證明.(2)既是“數列”又是“數列”,可得,,則對于任意都成立,則成等比數列,設公比為,驗證得答案.【詳解】(1)證明:由是等比數列,由等比數列的性質可得:等比數列是“數列”.(2)證明:既是“數列”又是“數列”,可得,()(),()可得:對于任意都成立,即成等比數列,即成等比數列,成等比數列,成等比數列,設,()數列是“數列”時,由()可得:時,由()可得:,可得,同理可證成等比數列,數列是等比數列【點睛】本題是一道數列的新定義題目,考查了等比數列的性質、通項公式等基本知識,考查代數推理、轉化與化歸以及綜合運用數學知識探究與解決問題的能力,屬于難題.20、(Ⅰ);(Ⅱ)證明見解析【解析】

(Ⅰ)求導得到,,解得答案.(Ⅱ),故,在上單調遞減,在上單調遞增,,設,證明函數單調遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點,設零點為,故,即,在上單調遞減,在上單調遞增,故,設,則,設,則,單調遞減,,故恒成立,故單調遞減.,故當時,.【點睛】本題考查了函數的切線問題,利用導數證明不等式,轉化為函數的最值是解題的關鍵.21、(1);(2).【解析】

(1)由兩角差的正弦公式計算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因為,所以.因為,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【點睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.22、(1)證明見解析;(2).【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論