




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ExecutiveSummary
Drivenbythejointeffortofkeytechnologiessuchasbigdataandcloud
computing,asizablenumberofthegenerativepre-trainedtransformer(GPT)large
models,representedbyChatGPT,haveemerged,showinghighlycreativecontent
generationcapabilitiesandprovidinghighlyintelligenthuman-computerinteraction
experience.Foralongtime,therehavebeenmanytechnicalproblemsin
communicationthataredifficulttomodelaccuratelyorsolveefficientlyusing
traditionalmethods.Meanwhile,GPTdemonstratesthepotentialtoimprovethe
performanceofinformationcommunicationservicesandintelligentautonomous
networks.Inaddition,therapiddevelopmentandbroadapplicationsofGPTalsoneed
tobesupportedbyacommunicationnetworkwithlargebandwidth,lowlatency,and
highreliability.
Therefore,fromtheperspectiveofcommunicationpractitioners,thiswhitepaper
explorestheinterrelationshipbetweenGPTandcommunication.Firstly,Chapter1
sketchestheconcept,developmentprocess,andresearchstatusofGPTlargemodels.
Secondly,Chapter2discussesthenewapplicationsofGPTinthecommunication
industry,andthepositionofGPTinnetworkintelligentautonomy.Thirdly,Chapter3
exploreshowthecommunicationnetworksenablethebroadapplicationsofGPT,and
givesatypicalideaoffuturenetworkdesign.Moreover,Chapter4analyzesthe
processofGPTandcommunicationfromindependentevolutiontocollaborative
development,aswellasapplicationsof“6G+GPT”empoweringthedigital
transformationofindustries.Inaddition,Chapter5pointsoutthefivemostobvious
problemsandchallengesintheintegrationprocessof“GPT+Communication”and
providessomesolutions.Subsequently,Chapter6putsforwardseveralsuggestionson
howGPTandthecommunicationindustrycandeveloptogether,aswellasthe
prospectsforthefuture.Finally,Chapter7concludesthiswhitepaper.
1/92
0Preface
Inrecentyears,asArtificialIntelligence(AI)technologyhascontinuedto
advance,particularlyintheareasofreinforcementlearning,largemodels,and
generativecontent,variousindustrieshavebeenactivelyexploringitsapplications.At
theendofNovember2022,OpenAIreleasedtherapidlypopularizedchatbot
ChatGPT,whichpossessesastonishingnaturallanguageunderstandingandgeneration
capabilities,attractingwidespreadattentionfromsociety.Subsequently,inMarch
2023,thelaunchoftheupgradedversionGPT-4multimodallargemodelreignited
enthusiasmforgenerativeAI,leadingtotheemergenceofnumerouslargemodelsin
quicksuccession.
Sincetheinceptionoftext-basedconversationalinteractions,GPThas
profoundlyimpactedpeople’sproductionandliveswithinafewshortyears,bringing
aboutsignificantchanges.Manypeoplebelievethatitwillcontinuetobring
disruptivechanges.BillGatespointedoutthatlargemodelsrepresentthemost
revolutionarytechnologicaladvancementinover40years;NVIDIACEOJensen
Huanglikenedtheemergenceoflargemodelstothe“iPhonemoment”ofAI;Baidu
CEORobinLiproposedthatlargemodelsarepreparedtochangetheworldatthe
2023ZhongguancunForum.FromtheripplescausedbyChatGPTtotheglobalwave
itunleashed,GPTlargemodelshavebecomeoneofthemostdiscussedtopicstoday,
signalingacrucialturningpointinthedevelopmentofgenerativeAI;theyear2023
willalsoundoubtedlyleaveasignificantmarkinthehistoryofAIdevelopment.
Asanindustryfacilitatinginformationexchangeandtransmissionamong
humans,nature,andmachines,thecommunicationindustryiscloselyintertwined
withthedevelopmentoflargemodeltechnology.Thecommunicationindustryitself
hasahighdegreeofdigitalizationandneedstohandlecomplexdata.Theintroduction
ofGPTcanstreamlineasignificantamountofwork,bringingaboutsignificant
capacityenhancementsforcommunicationoperators,particularlyintherealmsof
networkoperationsandmaintenance(O&M)andservicedelivery,makingthemmore
intelligent.Intheeraoflargemodels,withtheadvancementofGPTtechnology,the
demandforcomputingpower,data,andalgorithmswillexperienceexplosivegrowth,
requiringcommunicationinfrastructuretoprovidesupport.Inthefuture,howGPT
empowersthecommunicationindustryandhowthecommunicationindustrysupports
4/92
GPTarequestionsthateverycommunicationprofessionalshouldearnestly
contemplate.
Therefore,thiswhitepaperisbasedonthedevelopmenthistoryandlatest
researchadvancementsofGPTlargemodels.Ontheonehand,itelaboratesonthe
innovativeapplicationsofGPTwithinthecommunicationindustryinspecific
scenarios.Ontheotherhand,itinvestigateshowfuturecommunicationnetworks
providenativesupportforGPTintermsofarchitectureandkeytechnologies.
Subsequently,combiningGPTwithcommunication,itproposesaroadmapforthe
digitalandintelligenttransformationofkeyindustriesthroughtheircollaborative
development,whilealsopointingouttheproblemsandchallengesintheintegration
anddevelopmentprocess.Inresponsetotheseissues,correspondingdevelopment
recommendationsandprospectsareprovided.Finally,thewholecontentofthiswhite
paperissummarized.Thecompletechapterstructureofthiswhitepaperisillustrated
inFigure0-1below.
5/92
Figure0-1WhitePaperChapterStructureDiagram
ThiswhitepaperwasjointlyorganizedandauthoredbytheBeijingInstituteof
Technology,withparticipationfrom18entities,includingthethreemajortelecom
operators(ChinaMobile,ChinaUnicom,andChinaTelecom),seventop-tier
universities,threerenownedenterprises,andfiveleadingresearchinstitutesinthe
industry.Spanningovereightmonths,theprocessinvolvedthein-depthparticipation
ofover50expertsandscholars,fromconductingresearchandtrackingthecutting-
edgestatusofGPTlargemodelstoexploringtherelationshipbetweenGPTand
communication,conceptualizingtheoutlineofthewhitepaper,arrangingspecific
chaptercontent,andassigningwritingtasks.Itunderwentmorethantwentyroundsof
discussionsandrevisionsbeforereachingitscompletion.Duringthisperiod,some
participatingentitiesalsosuccessfullycollaboratedtoapplyforaninternational
6/92
cooperationprojectfromtheMinistryofScienceandTechnologyofthePeople’s
RepublicofChina,titled“ResearchonKeyTechnologiesofIntegrated
MultidimensionalIntelligentOrchestrationinCloudComputingNetworksBasedon
LargeModels,”therebybettersupportingthecompletionofthiswhitepaper.
WebelievethatAItechnologyisstillinarapidlydevelopingstage,andthe
integrationandmutualsupportbetweenGPTlargemodelsandcommunication
networkscancontinuallyexpandinnovativeapplicationscenariosandimprove
ecosystemdevelopment,thusjointlypromotingtechnologicalprogressandthe
developmentofvariousindustries.
7/92
1.GPTLeadstheTideofArtificialIntelligenceDevelopment
WiththeadvancementofAIanddeeplearningtechnologies,theconceptof
“largemodels”hascomeintofocus,withChatGPTbeingthemostnotable.On
November30,2022,OpenAIofficiallyreleasedtheAIchatbotChatGPT,which
representsArtificialIntelligenceGeneratedContent(AIGC)inthefieldofnatural
language.Itspowerfulcapabilitieshavechangedthewaymanypeopleworkandlive,
sparkinganewwaveofAIgloballyandattractingwideattentionfrombothindustry
andacademia.OnMarch14,2023,theofficiallyreleasedGPT-4underwentfurther
upgrades,significantlyrelaxingtextinputrestrictions,improvingansweraccuracy,
andevenenablingdirectinputofimagestogeneratelyrics,creativetexts,etc.,with
stylevariations,onceagainshowcasingtheimpactofgenerativeAI.OnNovember7,
2023,atthefirst-everOpenAIDevDay,OpenAICEOAltmanshowcasedGPT-4
Turbototheworld.AsthelatestversionofGPT,ithasbeenupdatedinareassuchas
dataquality,imageprocessing,andspeechconversion,bringingdevelopersandusers
morepossibilitiesandopportunities.
So,whatareChatGPTandGPT?Whatdevelopmentjourneyhavethey
undergone?Andhowshouldtheybeunderstoodandapplied?Thischapterwillstart
withanexplorationofGPTlargemodels,introducingtheirbasicconcepts,
developmenthistory,andcurrentresearchstatustoprovidereaderswitha
comprehensiveandin-depthunderstandingofGPT.
1.1.BasicConceptsofGPT
1.1.1GenerativePre-trainedTransformer
GPTstandsforGenerativePre-trainedTransformer,originatingfromthefields
ofdeeplearningandnaturallanguageprocessing(NLP).Overthepastfewyears,
withtheadvancementofcomputingpowerandtheemergenceofbigdata,significant
breakthroughshavebeenmadeinthefieldofNLP.GPT,asanintegrationofaseries
ofNLPtechnologies,emergedinsuchacontext,asshowninFigure1-1.
G:Generative.ThisindicatesthatGPThastheabilitytospontaneouslygenerate
content.
P:Pre-trained.ThisindicatesthatGPThasundergonepre-trainingandisready
forimmediateuse.
8/92
T:Transformer.ThisindicatesthatGPTisbasedontheTransformerarchitecture
forlanguagemodeling.
Figure1-1MeaningofGPT
In2017,theGoogleteamfirstproposedtheTransformermodelbasedonthe
Self-AttentionMechanism(SAM)andappliedittoNLP[1].OpenAIappliedthis
technologyandreleasedtheearliestgenerationoflargemodels,GPT-1,in2018.Since
then,theparametersizeofeachgenerationofGPTmodelshasgrownexplosively.
TheparametersizeofGPT-2,releasedinFebruary2019,was1.5billion,whileGPT-3,
releasedinMay2020,directlyreached175billion.
ThemeteoricriseofChatGPTwasnotbychance.Itistheresultoftheeffortsof
manypeopleandalongperiodofevolution.TounderstandthedevelopmentofGPT,
oneshouldfirstgrasptheconceptoflargemodelsandTransformerarchitecture.
1.1.2LargeModel
Generally,beforeChatGPT,theAImodelsthatreceivedpublicattentionwere
mainlyusedforsingletasks.Forexample,“AlphaGo”,whichignitedtheentireAI
marketandprompteditsexplosivedevelopment,defeatedGoworldchampionLee
Sedolinthe“Manvs.Machine”matchin2016,basedonglobalGogamerecords.
However,fundamentally,theseAIdatamodels,whichfocusonspecifictasks,can
onlybecalled“smallmodels”comparedtoChatGPT.
Largemodelsrefertomachinelearningmodelswithhugeparameterscalesand
complexity.ThetermusuallyreferstoLargeLanguageModels(LLMs).Alanguage
modelisanAImodelthat,aftertraining,canunderstandandgeneratehuman
language,and“large”meansthatthemodel’sparametersareverylargerelativeto
“smallmodels.”
AsshowninFigure1-2,thisevolutionarytreetracesthedevelopmenthistoryof
9/92
largemodelsinrecentyears,highlightingsomeofthemostwell-knownmodels,with
modelsonthesamebranchbeingmorecloselyrelated[2].Solidsquaresrepresent
open-sourcemodels,whilehollowsquaresrepresentclosed-sourcemodels.Non-
Transformermodelsareshowningray,andamongTransformer-basedmodels,
Encodermodelsareinthepinkbranch,Decodermodelsareinthebluebranch,and
Encoder-Decodermodelsareinthegreenbranch.
Figure1-2EvolutionaryTreeofLargeModels
Basedonthisevolutionarytreediagram,wecanconcludethatDecoder-only
modelsaregraduallybecomingthedominantmodelsinLLMdevelopment,and
OpenAIcontinuestomaintainitsleadingpositioninLLM.Metahasmade
outstandingcontributionstoopen-sourceandLLMresearch,butthereisatrend
towardsclosed-sourcedevelopmentafterthelaunchofGPT-3.Inaddition,many
companiesandinstitutionsarestillactivelyexploringEncoder-Decodermodels,such
asGoogle.
Currently,majorinstitutionsabroadthatreleaselargemodelsincludeOpenAI,
Anthropic,Google,andMeta,withmodelparameterscalesmainlyinthetensand
hundredsofbillions.Uptonow,thetopGPTlargemodelsabroadincludeChatGPT,
Claude,Bard,andLlama.Amongthem,afterGooglereleasedthelatestnative
10/92
multimodallargemodel–Gemini,BardwasofficiallyrenamedGemini.
Inthisgloballycompetitivearena,Chinaisalsokeepingpace,developingmany
largemodels,includingTencent’s“Hybrid,”Alibaba’s“TongyiQianwen,”Huawei’s
“Pangu,”andChinaMobile’s“Jiutian”series.DatashowsthatasofOctober2023,
thereareatotalof254domesticcompanies,universities,andresearchinstituteswith
largemodelsofover1billionparameters,indicatingthatthe“battleofthehundred
models”istransitioningfromthepreviousstageof“beingborn”toanewstageof
“beingused.”Figure1-3showssomeofthelargemodelsdevelopedbydomesticand
foreigncompaniescurrently.
Figure1-3VariousTypesofLargeModels
1.1.3TransformerArchitecture
TheTransformerarchitectureisacrucialfoundationofGPT,whichisaneural
networkarchitecturebasedontheSAMandwidelyusedinlargemodelsinthefield
ofNLP.ItscorecomponentsaretheEncoderandDecoder.TheEncoderencodes
inputtextintoaseriesofvectors,whiletheDecoderdecodesthesevectorsonebyone
intooutputtext.BeforetheintroductionofTransformer,themainstreammodelsinthe
NLPfieldwereRecurrentNeuralNetworks(RNNs),whichusedrecursionand
convolutionalneuralnetworksforlanguagesequencetransformation.
InJune2017,theGoogleBrainteampublishedapapertitledAttentionisAllYou
NeedatthetopAIconferenceNeurIPS,proposinganewnetworkarchitecturecalled
Transformer.ItisentirelybasedontheSAM,abandoningrecursionandconvolution.
Afteronly12hoursoftrainingoneightP100GraphicsProcessingUnits(GPUs),
Transformerachievedhighertranslationquality[1],showcasingexcellentparallelism
11/92
andbecomingthemostadvancedLLMatthetime.
Figure1-4illustratesthenetworkstructureoftheTransformer.Itconsistsofa
seriesofEncodersandDecoders,eachcomprisingmulti-headattentionlayersandall-
inclusiveconnectedfeedforwardnetworks.GPT,similartotheDecoderpartof
Transformer,isanautoregressivemodel.
Figure1-4TransformerNetworkStructureDiagram
ThecorecomponentintheTransformeristhemulti-headattentionmechanism
module,asshowninFigure1-5.Itrequiresthreespecifiedinputs:Q(Query),K(Key),
andV(Value).Then,itcalculatesthesimilaritybetweeneachpairofQandKand
weightseachVbasedonthesimilaritytoobtaintheattentioncalculationresult.
12/92
Figure1-5Multi-HeadAttentionMechanismModule
Themulti-headattentionmechanismdoesnotcalculateattentiononlyoncebut
dividestheinputintosmallerblocksandthencalculatesthescaleddot-product
attentioninparalleloneachsubspace.Thisdesignallowseachattentionmechanism
tooptimizedifferentfeaturepartsofeachword,balancingthebiasesthatmayarise
fromthesameattentionmechanismandenablingthemodeltocapturesemantic
informationatdifferentlevels,therebyenhancingthemodel’sexpressivepowerand
improvingitseffectiveness.
1.2.DevelopmentHistoryofGPT
13/92
Figure1-6DevelopmentHistoryofGPT
ThedevelopmenthistoryofGPTcanbedividedintotwostages.Before
ChatGPT,theemphasiswasoncontinuouslyincreasingthebasicscaleoflarge
modelsandenhancingnewcapabilities.ChatGPTandGPT-4,ontheotherhand,
focusmoreonreinforcementlearningfromhumanfeedbacktounderstandhuman
intentandprovidebetterservices,asshowninFigure1-6.
①June2018:OpenAIpublishedthepaperImprovingLanguageUnderstanding
byGenerativePre-trainingandofficiallyreleasedGPT-1[3].
Basicapproach:Generativepre-training(unsupervised)+downstreamtask
fine-tuning(supervised).
BasedonaunidirectionalTransformerlanguagemodelwithadecoder
structure,consistingof12layers.
117millionparameters,5GBtrainingdata,relativelylimitedmodelsizeand
capabilities.
Contextwindow:512tokens.
②February2019:OpenAIpublishedthepaperLanguageModelsare
UnsupervisedMultitaskLearners,proposingthatlanguagemodelsareunsupervised
multitasklearners,andGPT-2wasborn[4].
Basicapproach:Removingsupervision,retainingonlyunsupervisedlearning.
48-layerTransformerstructure.
14/92
1.5billionparameters,andthetrainingdatavolumeincreasedto40GB.
Contextwindow:1024tokens.
③May2020:OpenAIpublishedthepaperLanguageModelsareFew-Shot
LearnersandintroducedtheGPT-3model[5].
Basicapproach:Unsupervisedlearning+in-contextlearning.
96-layermulti-headTransformer.
Thenumberofparametersincreasedto175billion,trainedon45TBoftext
data.
Contextwindow:2048tokens.
④March2022:OpenAIonceagainpublishedthepaperTrainingLanguage
ModelstoFollowInstructionswithHumanFeedback,introducingReinforcement
LearningfromHumanFeedback(RLHF),andlaunchedtheInstructGPTmodel[6].
Basicapproach:RLHF+fine-tuningtraining.
Enhancedhumanadjustmentofmodeloutput.
Resultsrankedinamoreunderstandablemanner.
ChatGPTisaderivativeofInstructGPT,andthetwohavethesamemodel
structureandtrainingmethod.Theonlydifferenceisthewaytheycollectdata.
ChatGPTfocusesmoreoninteractionintheformofdialogue.
⑤March2023:OpenAIreleasedthemultimodalpre-trainedlargemodelGPT-4,
onceagainundergoingsignificantupgrades.
Basicapproach:Multimodal.
Contextwindow:8195tokens.
1.8trillionparameters,13trilliontokentrainingdata.
Powerfulimagerecognitioncapabilities.
AlthoughthecurrentcapabilitiesofGPT-4inreal-worldscenariosmaynot
matchthoseofhumans,ithasdemonstratedsignificantlysuperiorabilitiesinvarious
professionalandacademicexams.EvenSATscores(whichcanbeunderstoodas
scoresfortheU.S.collegeadmissionstest)ofGPT-4havesurpassedthoseof90%of
testtakers,reachingthelevelrequiredforadmissiontotopuniversitiessuchas
HarvardandStanford.
1.3.CurrentResearchStatusofGPT
OnOctober12,2023,theanalysiscompanystateof.aireleasedtheStateofAI
Report2023.ThereportpointedoutthatOpenAI’sGPT-4remainsthemostpowerful
15/92
LLMglobally.GenerativeAIhaspropelledadvancementsinlifesciencesandhas
beenasaviorfortheventurecapitalindustry[7].Largemodelscontinuetoachieve
technologicalbreakthroughs,especiallyinthefieldoflifesciences,making
significantprogressinmolecularbiologyanddrugdiscovery.
OnDecember14,2023,Natureannouncedtenpeoplein2023.Notably,the
chatbotChatGPT,duetoitsdominanceofvariousnewsheadlinesin2023and
profoundimpactonthescientificcommunityandsocietyatlarge,wasincludedasthe
11th“non-humanmember”onthelist,recognizingthesignificantchangesbrought
aboutbygenerativeAItoscientificdevelopmentandprogress.Currently,both
domesticallyandabroad,researchonGPTlargemodelscontinuestodeepen,with
manyinstitutionsstartingtodeveloptheirownlargemodels,andtheapplication
scenariosarebecomingincreasinglydiverse.LargemodelsrepresentedbyChatGPT
haveofficiallyusheredintheeraofAI2.0.
1.3.1ForeinResearchStatus
1UnitedStates
IntheUnitedStates,startupslikeOpenAIandAnthropic,alongwithtechgiants
suchasMicrosoftandGoogle,areleadingtherapiddevelopmentoflargemodels.
Majorcompaniesarecontinuallyenhancingtheircompetitiveness.Googleinvested
$300millioninAnthropictocounterthethreatposedbyChatGPT,joining
reinforcementlearningfromartificialintelligencefeedback(RLAIF)toreducehuman
feedback.InDecember2022,GooglepublishedapapertitledConstitutionalAI:
HarmlessnessfromAIFeedback,introducingtheAImodelClaude.Buzzfeed,aUS
newmediagiant,sawitsstockpricetripleintwodaysafterannouncingplanstouse
ChatGPTtoassistcontentcreation.Microsoft,asthemaininvestorinOpenAI,isalso
usingChatGPTtoenhanceitsproductcompetitivenessandsupplementits
professionalknowledgeandmathematicalshortcomings.
2UnitedKingdom
InApril2023,theUKgovernmentannouncedthatitwouldprovide£100million
ininitialfundingtotheteamresponsibleforbuildingtheUKversionofthe
foundationalAImodeltoacceleratethedevelopmentofAItechnologyintheUK.The
UKgovernmentstatedthatthisinvestmentwouldbeusedtofundnewteamsjointly
builtbythegovernmentandtheindustrytoensuretheUK’sAI“sovereign
capabilities.”Thegoalofthisinitiativeistopromotetheapplicationofsafeand
16/92
reliablefoundationalmodelsandstrivetobuildtheUKintoatechnological
“superpower”by2030.Inaddition,inresponsetothecontroversyovertheapplication
oflargemodelssuchasGPTinAIethics,theUKhasalsoissuedawhitepaperon
regulatorymeasuresandstatedthatregulatoryagencieswillnextissueguidelinesand
riskassessmenttemplatestovariousorganizations.Othertoolsandresourceswillbe
usedtoformulatespecificimplementationprincipleswithintheindustry.
③Europe
InFinland,FlowriteisanAI-basedwritingtoolthatcangenerateemails,
messages,andothercontentbyinputtingkeywords.IntheNetherlands,the
omnichannelcommunicationplatformMessageBirdlauncheditsownAIplatform
MessageBirdAI,whichcanunderstandthemeaningofcustomerinformationand
respondaccordingly.BotharebasedonGPT-3.Germanyisalsoconstantlycatching
upinthedevelopmentoflargemodels.Forexample,onMarch7,2023,Google
launchedthemultimodallargemodelPaLM-E,jointlydevelopedbytheTechnical
UniversityofBerlinandGoogle.
InFebruary2024,theEuropeangenerativeAIunicornMistralAIunveiledits
latestLLM,MistralLarge.Withacontextwindowof32Ktokens,thismodelsupports
English,French,Spanish,German,andItalian.Astheflagshipmodelnewlylaunched,
MistralLargedemonstratedoutstandingperformanceincommon-sensereasoningand
knowledgequizzes,scoringhigheroverallthanGeminiProandClaude2,secondonly
toGPT-4.
④SouthKorea
SouthKoreaisalsoamongtheearliestcountriestoengageinlargemodel
development.Currently,notablerepresentativesinthisfieldfromSouthKoreainclude
NAVER,Kakao,KT,SKT,andLG.SouthKorea’saccumulationofexpertisein
semiconductorchipspositionsitadvantageouslyintherealmoflargemodels.
Presently,SouthKoreansemiconductorcompaniesareactivelyformingalliancesto
tacklethecomputationalchallengesposedbylargemodeldevelopment.Bytheendof
2022,NAVERinitiatedcollaborationwithSamsungElectronicstodevelopnext-
generationAIchipsolutions,optimizingthembasedonNAVER’slargemodel,
HyperCLOVA.Moreover,SouthKoreahasmadeconsiderableexplorationsinthe
verticalapplicationsoflargemodels,suchasKoGPTinhealthcareandExaonein
biopharmaceuticalsandintelligentmanufacturing.
17/92
⑤Japan
Japan,asacountrywithalesscommonlanguage,facesthechallengeof
insufficientlinguisticdata.TheearliestpubliclylaunchedNLPlargemodelinJapan
wasNTELLILINKBackOffice,introducedin2020,capableofdocument
classification,knowledgereadingcomprehension,andautomaticsummarization,
amongotherfunctions.ItisanapplicationdevelopedbasedonGoogleBERT.
ThemoreJapanese-bloodedgenerativeAIsareactuallyHyperCLOVA,Rinna
andELYZAPencil,butHyperCLOVAandRinnaalsohaveforeigngenes.
HyperCLOVA,initiallylaunchedbytheSouthKoreansearchgiantNAVERin2021,
standsoutasthefirstLLMspecificallytailoredfortheJapanese.Itachievedfirst
placeinalltracksatthedialoguesystemlivecompetitionheldin2021.ELYZAPencil,
ontheotherhand,isanLLMintroducedbyanAIstartupaffiliatedwiththeMatsuo
LaboratoryattheUniversityofTokyo,markingJapan’sfirstgenuinepublicreleaseof
agenerativeAIproduct.
1.3.2DomesticResearchStatus
ManymightbelievethatChina’sjourneywithlargemodelsbeganwiththe
“ERNIEBot,”butinreality,it’smerelyaconversationaltoolpoweredbylarge
models.Largemodelswerealreadyintroduceddomesticallyasearlyas2019.Inthat
year,largemodelswereextensivelyappliedindrugdevelopment,promptingmajor
technologycompaniestoinitiatetheirownlargemodelprojects.InMarch2021,the
BeijingAcademyofArtificialIntelligenceunveiledChina’sfirstultra-large-scale
intelligentmodelsystem,“Wudao1.0.”Subsequently,inAprilofthesameyear,
AlibabaGrouplaunchedPLUG,thelargestpre-trainedlanguagemodelintheChinese
community,whichwaswidelyreferredtoasthe“ChineseversionofGPT-3”atthe
time.
Inrecentyears,significantprogresshasbeenmadedomesticallyinthefieldof
largemodels.Fromresearchinstitutionstoenterprises,therehasbeenasubstantial
increaseininvestmentinlargemodels,leadingtosignificantbreakthroughsin
algorithms,computingpower,data,andotherareas.Chinahasproducedabatchof
internationallycompetitivelargemodels,widelyappliedacrossvariousfields.
OnMarch16,2023,basedontheERNIElargemodel,Baidureleased“ERNIE
Bot,”China’sfirstChatGPT-likeproduct.OnMay6,2023,iFLYTEKlaunchedthe
ChineseversionofChatGPT,“SparkCognitiveLargeModel,”capableoftext
18/92
generation,languageunderstanding,knowledgequestionanswering,logicalreasoning,
mathematicalabilities,codingskills,andmultimodalcapabilities.
1.3.3InternationalOrganizations
Today,internationalorganizationssuchastheInternationalOrganizationfor
Standardization(ISO)andtheInternationalElectrotechnicalCommission(IEC)have
allcarriedoutstandardresearchonkeyterminologies.InMarch2023,theEuropean
TelecommunicationStandardsInstitute(ETSI)alsointroduced
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生殖整形試題答案及
- 激光技術工程師證書考試方法及試題答案
- 系統規劃與管理師考試的影響因素分析試題及答案
- 組織知識研討的試題及答案
- 醫院文秘考試試題及答案
- 考試流程與注意事項稅務師試題及答案
- 礦山巖體力學試題及答案
- 理解科技政策對專利創新活動的激勵與引導作用試題及答案
- 系統規劃與管理師考試中的應變能力與臨場發揮技巧的培養方向試題及答案
- 職高汽修面試題及答案
- DB15-T 3967.3-2025 氣候可行性論證技術規范 第3部分:水利工程
- Module 9 Friendship 大單元整體教學設計2023-2024學年外研(新標準)版八年級下冊
- 《人工智能技術基礎》課件-第五章 深度學習
- 2025年戶外廣告牌租賃合同(合同范本)
- 2025年第六屆美麗中國全國國家版圖知識競賽測試題庫及答案
- 2025年project使用培訓標準課件
- 文獻檢索與科技論文寫作考核大綱
- 湖北淺圓倉滑模施工方案
- 第二章第二節氯氣及其化合物-氯氣制備及性質微型化實驗改進設計 教學設計 2024-2025學年高一上學期化學人教版(2019)必修第一冊
- 【MOOC】《研究生英語科技論文寫作》(北京科技大學)中國大學MOOC慕課答案
- 《PCR技術簡介》PPT課件.ppt
評論
0/150
提交評論