




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽合肥市2025屆高三第二學期第3次練考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.2.的展開式中的常數項為()A.-60 B.240 C.-80 D.1803.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立4.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象5.已知,,則()A. B. C. D.6.復數為純虛數,則()A.i B.﹣2i C.2i D.﹣i7.設集合(為實數集),,,則()A. B. C. D.8.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.9.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.10.若函數在時取得最小值,則()A. B. C. D.11.已知函數,若函數的所有零點依次記為,且,則()A. B. C. D.12.已知Sn為等比數列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣85二、填空題:本題共4小題,每小題5分,共20分。13.已知函數則______.14.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).15.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內切球的表面積為_________.16.為激發學生團結協作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線①:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.(1)若選擇生產線①,求生產成本恰好為18萬元的概率;(2)為最大限度節約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.18.(12分)在直角坐標系中,曲線的參數方程是(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉,交曲線于點,求的最大值.19.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.20.(12分)已知函數f(x)=x-lnx,g(x)=x2-ax.(1)求函數f(x)在區間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數h(x)圖像上任意兩點,且滿足>1,求實數a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數a的最大值.21.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.22.(10分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
設為、的夾角,根據題意求得,然后建立平面直角坐標系,設,,,根據平面向量數量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數形結合思想的應用,屬于中等題.2.D【解析】
求的展開式中的常數項,可轉化為求展開式中的常數項和項,再求和即可得出答案.【詳解】由題意,中常數項為,中項為,所以的展開式中的常數項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.3.D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.4.D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.5.D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.6.B【解析】
復數為純虛數,則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數,∴,解得..故選:.【點睛】本題考查復數的分類,屬于基礎題.7.A【解析】
根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎題.8.D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.9.C【解析】
根據給定的程序框圖,計算前幾次的運算規律,得出運算的周期性,確定跳出循環時的n的值,進而求解的值,得到答案.【詳解】由題意,,第1次循環,,滿足判斷條件;第2次循環,,滿足判斷條件;第3次循環,,滿足判斷條件;可得的值滿足以3項為周期的計算規律,所以當時,跳出循環,此時和時的值對應的相同,即.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規律是解答的關鍵,著重考查了推理與計算能力.10.D【解析】
利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.11.C【解析】
令,求出在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.12.D【解析】
由等比數列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據等比數列的前n項和公式解答即可.【詳解】設等比數列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數列的前n項和,根據等比數列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點睛】本題考查對數、指數的運算性質,分段函數求值關鍵是“對號入座”,屬于容易題.14.192【解析】
根據題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數原理計算可得答案.【詳解】根據題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.15.【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內心,內切圓半徑.三個側面與底面所成的角均為,,,的高,,設內切球的半徑為R,∴,內切球表面積.故答案為:.【點睛】本題考查三棱錐內切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內切球的半徑,是一道中檔題.16.2【解析】
根據比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2【點睛】本題考查推理,計數原理的圖形表示,意在考查數形結合分析問題的能力,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)0.0294.(2)應選生產線②.見解析【解析】
(1)由題意轉化條件得A工序不出現故障B工序出現故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產線增加的生產成本的期望,進而求出兩個生產線的生產成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產線①,生產成本恰好為18萬元,即A工序不出現故障B工序出現故障,故所求的概率為.(2)若選擇生產線①,設增加的生產成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產線①的生產成本期望值為(萬元).若選生產線②,設增加的生產成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產線②的生產成本期望值為(萬元),故應選生產線②.【點睛】本題考查了相互獨立事件的概率,考查了離散型隨機變量期望的應用,屬于中檔題.18.(1)(2)最大值為【解析】
(1)利用消去參數,求得曲線的普通方程,再轉化為極坐標方程.(2)設出兩點的坐標,求得的表達式,并利用三角恒等變換進行化簡,再結合三角函數最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標方程為,即.(2)不妨設,,,,,則當時,取得最大值,最大值為.【點睛】本小題主要考查參數方程化為普通方程,普通方程化為極坐標方程,考查極坐標系下線段長度的乘積的最值的求法,考查三角恒等變換,考查三角函數最值的求法,屬于中檔題.19.(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.20.(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動區間上的最值問題,這類問題的研究方法就是通過討論函數的極值點與所研究的區間的大小關系來進行求解.(2)注意到函數h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(x2)<x1-x2(x1<x2)恒成立,從而構造函數F(x)=h(x)-x在(0,+∞)上單調遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數的最值,得到a≤,再利用導數求函數M(x)=的最大值,這要用到二次求導,才可確定函數單調性,進而確定函數最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當t≥1時,f(x)在[t,t+1]上單調遞增,f(x)的最小值為f(t)=t-lnt;當0<t<1時,f(x)在區間(t,1)上為減函數,在區間(1,t+1)上為增函數,f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(x2)<x1-x2,變形得h(x1)-x1<h(x2)-x2恒成立.令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調遞增,故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,所以2x+≥a+2在(0,+∞)上恒成立.因為2x+≥2,當且僅當x=時取“=”,所以a≤2-2.(3)因為f(x)≥,所以a(x+1)≤2x2-xlnx.因為x∈(0,1],則x+1∈(1,2],所以?x∈(0,1],使得a≤成立.令M(x)=,則M′(x)=.令y=2x2+3x-lnx-1,則由y′==0可得x=或x=-1(舍).當x∈時,y′<0,則函數y=2x2+3x-lnx-1在上單調遞減;當x∈時,y′>0,則函數y=2x2+3x-lnx-1在上單調遞增.所以y≥ln4->0,所以M′(x)>0在x∈(0,1]時恒成立,所以M(x)在(0,1]上單調遞增.所以只需a≤M(1),即a≤1.所以實數a的最大值為1.【點睛】本題考查了函數與導數綜合問題,考查了學生綜合分析,轉化與劃歸,數學運算能力,屬于難題.21.(1)①函數與的圖象在區間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 理發店員工合同協議書
- 《房地產基礎》課件 情境一 教你選對地段
- 新房交易合同中介四方
- 普法宣講【法律學堂】第二十二章 起訴意見書-ldfjxs004
- 肇慶市實驗中學高三上學期語文高效課堂教學設計:文言文教案
- 江蘇省南京市致遠中學2024-2025學年初三下學期第四次模擬考試卷數學試題理試卷含解析
- 石家莊科技職業學院《礦資專業英語》2023-2024學年第二學期期末試卷
- 江西省寧都縣第二中學2024-2025學年初三7月調研考試(化學試題文)試題含解析
- 宜昌市2024-2025學年六年級下學期調研數學試卷含解析
- 江西省贛州市尋烏中學2024-2025學年招生全國統一考試考前演練(一)生物試題含解析
- 安全生產三項制度內容
- 體質健康管理典型案例
- 孩子的電子產品使用與管理
- 2024屆安徽省淮北市高三下學期二模英語模擬試題(有答案)
- 遼寧省本溪市2023-2024學年八年級下學期4月期中物理試題
- 中班幼兒主題墻設計方案
- 健身房市場調研報告總結與反思
- 鋼結構施工準備-鋼結構識圖
- 《企業安全生產費用提取和使用管理辦法》
- 華為培訓教程01網絡基礎
- 《嬰幼兒感覺統合訓練》課件-前庭覺
評論
0/150
提交評論