




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
普通高等學校2025屆高三數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,夾角為,,,則()A.2 B.4 C. D.2.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知是虛數單位,則復數()A. B. C.2 D.4.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發現,該金字塔底面周長除以倍的塔高,恰好為祖沖之發現的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.5.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.6.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.7.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數m的最小值是()A. B.3 C. D.8.若集合,,則()A. B. C. D.9.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心10.已知向量,(其中為實數),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于12.已知集合,則集合真子集的個數為()A.3 B.4 C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰士既不在同一行,也不在同一列的概率為______.14.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.15.展開式中項系數為160,則的值為______.16.設,若關于的方程有實數解,則實數的取值范圍_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的定義域為.(1)求實數的取值范圍;(2)設實數為的最小值,若實數,,滿足,求的最小值.18.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.19.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.20.(12分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.21.(12分)設等差數列滿足,.(1)求數列的通項公式;(2)求的前項和及使得最小的的值.22.(10分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.2.B【解析】
化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.3.A【解析】
根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.4.D【解析】
設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.5.A【解析】
設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.6.A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.7.D【解析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數m的取值范圍,即求正實數m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.8.B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.9.A【解析】
根據題意P到兩個平面的距離相等,根據等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.10.A【解析】
結合向量垂直的坐標表示,將兩個條件相互推導,根據能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.11.D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質及其推論.12.C【解析】
解出集合,再由含有個元素的集合,其真子集的個數為個可得答案.【詳解】解:由,得所以集合的真子集個數為個.故選:C【點睛】此題考查利用集合子集個數判斷集合元素個數的應用,含有個元素的集合,其真子集的個數為個,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數原理,排列與組合知識,考查了轉化能力,屬于中檔題.14.【解析】
基本事件總數,三人都收到禮物包含的基本事件個數.由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數,三人都收到禮物包含的基本事件個數.則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎題.15.-2【解析】
表示該二項式的展開式的第r+1項,令其指數為3,再代回原表達式構建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【點睛】本題考查由二項式指定項的系數求參數,屬于簡單題.16.【解析】
先求出,從而得函數在區間上為增函數;在區間為減函數.即可得的最大值為,令,得函數取得最小值,由有實數解,,進而得實數的取值范圍.【詳解】解:,當時,;當時,;函數在區間上為增函數;在區間為減函數.所以的最大值為,令,所以當時,函數取得最小值,又因為方程有實數解,那么,即,所以實數的取值范圍是:.故答案為:【點睛】本題考查了函數的單調性,函數的最值問題,導數的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)首先通過對絕對值內式子符號的討論,將不等式轉化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數定義域為,即恒成立,所以恒成立由單調性可知當時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當且僅當,,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,意在考查學生的轉化能力和計算求解能力.18.(1);(2)見解析【解析】
(1)由條件可得,再根據離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(ⅰ)當與軸垂直時,設直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設,,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關系,考查韋達定理的應用,考查了學生的計算能力,是中檔題.19.(1),;(2)【解析】分析:(1)用代入法消參數可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數方程代入曲線的直角坐標方程,其中參數的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數方程化為普通方程,一般用消參數法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數方程為(為參數)中參數具有幾何意義:直線上任一點對應參數,則.20.(1);(2).【解析】
(1)根據離心率以及,即可列方程求得,則問題得解;(2)設直線方程為,聯立橢圓方程,結合韋達定理,根據題意中轉化出的,即可求得參數,則三角形面積得解.【詳解】(1)設,由題意可得.因為是的中位線,且,所以,即,因為進而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當直線斜率為時,顯然不成立.直線斜率不為時,設直線的方程為,聯立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【點睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.21.(1)(2);時,取得最小值【解析】
(1)設等差數列的公差為,由,結合已知,聯立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數列的公差為,由及,得解得數列的通項公式為(2)由(1)知時,取得最小值.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醒膚潔面乳項目可行性研究報告
- 2025年跑步機保護條項目可行性研究報告
- 2025年腿部按摩器項目可行性研究報告
- 2025年硅藻土粉劑項目可行性研究報告
- 2025年烘烤兩用機項目可行性研究報告
- 2025年海藻葉面肥項目可行性研究報告
- 全面復習2024年圖書管理員考試內容試題及答案
- 專業培訓的圖書管理員考試試題及答案2024
- 25年班組三級安全培訓考試試題A卷附答案
- 25年工廠員工安全培訓考試試題及參考答案【綜合卷】
- 2025年山東省聊城市冠縣中考一模地理試題(原卷版+解析版)
- 馮姓姓氏歷史起源研究報告
- 體檢護士禮儀規范
- 日本動漫文化之旅
- 課間15分鐘微運動實施方案
- 2025-2030中國真空結晶器行業市場現狀供需分析及投資評估規劃分析研究報告
- 使用錯誤評估報告(可用性工程)模版
- TSG 23-2021 氣瓶安全技術規程 含2024年第1號修改單
- 中國特色社會主義理論體系的形成發展PPT2023版毛澤東思想和中國特色社會主義理論體系概論課件
- A4標簽打印模板
- 腐蝕試驗方法PPT課件
評論
0/150
提交評論