




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆天津市薊縣邦均中學高三下學期一診考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,2.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為3.已知,,若,則向量在向量方向的投影為()A. B. C. D.4.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.25.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.46.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.7.已知函數,.若存在,使得成立,則的最大值為()A. B.C. D.8.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數,黑點為陰數,若從陰數和陽數中各取一數,則其差的絕對值為5的概率為A. B. C. D.9.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.10.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.11.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°12.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦距為__________,漸近線方程為________.14.甲、乙、丙、丁四名同學報名參加淮南文明城市創建志愿服務活動,服務活動共有“走進社區”、“環境監測”、“愛心義演”、“交通宣傳”等四個項目,每人限報其中一項,記事件為“4名同學所報項目各不相同”,事件為“只有甲同學一人報走進社區項目”,則的值為______.15.在中,內角所對的邊分別是.若,,則__,面積的最大值為___.16.已知多項式的各項系數之和為32,則展開式中含項的系數為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.18.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.19.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.20.(12分)選修4-5:不等式選講已知函數.(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數的值.21.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標準方程;(2)經過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.22.(10分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
試題分析:由程序框圖可知,框圖統計的是成績不小于80和成績不小于60且小于80的人數,由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.2、C【解析】
根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.3、B【解析】
由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題4、D【解析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.5、D【解析】
用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.6、C【解析】
由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C【點睛】本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.7、C【解析】
由題意可知,,由可得出,,利用導數可得出函數在區間上單調遞增,函數在區間上單調遞增,進而可得出,由此可得出,可得出,構造函數,利用導數求出函數在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數的定義域為,對恒成立,所以,函數在區間上單調遞增,同理可知,函數在區間上單調遞增,,則,,則,構造函數,其中,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,.故選:C.【點睛】本題考查代數式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.8、A【解析】
陽數:,陰數:,然后分析陰數和陽數差的絕對值為5的情況數,最后計算相應概率.【詳解】因為陽數:,陰數:,所以從陰數和陽數中各取一數差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.9、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數運算,屬于基礎題.10、D【解析】
如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.11、C【解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.12、D【解析】
根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.14、【解析】
根據條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據題意得所以故答案為:【點睛】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎題.15、1【解析】
由正弦定理,結合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因為,所以由正弦定理可得,所以;所以,當,即時,三角形面積最大.故答案為(1).1(2).【點睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎題型.16、【解析】
令可得各項系數和為,得出,根據第一個因式展開式的常數項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:【點睛】本題主要考查了二項展開式的系數和,二項展開式特定項,賦值法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設,由圓方程與雙曲線方程聯立,消去后整理,可得,,由先求出,回代后求得坐標,計算;(3)由已知得,設,由圓方程與雙曲線方程聯立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設,由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設由得:,,由得,解得,,,所以,,,當且僅當三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學生的運算求解能力要求較高,解題時都是直接求出交點坐標.難度較大,屬于困難題.18、(1)(2)【解析】
(1)由不等式可得,討論與的關系,即可得到結果;(2)先解得不等式,由集合M中有且僅有一個整數,當時,則M中僅有的整數為;當時,則M中僅有的整數為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數為,所以,即;當,即時,M中僅有的整數為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結果求參數范圍,考查分類討論思想與運算能力.19、(1)極小值為,極大值為.(2)【解析】
(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.【點睛】本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.20、(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數的形式,分類討論,分別求得解集,綜合可得結論.(2)把f(x)去絕對值寫成分段函數,畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數的最值問題,體現了分類討論的數學思想,屬于中檔題21、(1);(2)見解析【解析】
(1)根據已知可得,結合離心率和關系,即可求出橢圓的標準方程;(2)斜率不為零,設的方程為,與橢圓方程聯立,消去,得到縱坐標關系,求出方程,令求出坐標,要證、、三點共線,只需證,將分子用縱坐標表示,即可證明結論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設的方程為,聯立方程,消去得,由題意,得恒成立,設,,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點共線.當直線的斜率存在時,設的方程為,,,聯立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因為,,則直線,的斜率分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建東職業技術學院《電腦排版技術》2023-2024學年第二學期期末試卷
- 湖南信息職業技術學院《藥用高分子材料》2023-2024學年第二學期期末試卷
- 淮陰工學院《系統辨識》2023-2024學年第二學期期末試卷
- 貴陽信息科技學院《生物化學類實驗》2023-2024學年第二學期期末試卷
- 沈陽工業大學工程學院《中國傳統文化與原典研究》2023-2024學年第二學期期末試卷
- 淮南聯合大學《中醫運動養生學》2023-2024學年第一學期期末試卷
- 南昌航空大學科技學院《有機化學C》2023-2024學年第二學期期末試卷
- 武昌理工學院《骨骼肌肉功能解剖學》2023-2024學年第一學期期末試卷
- 河南科技職業大學《應用數學》2023-2024學年第一學期期末試卷
- 浙江建設職業技術學院《機械制圖與AutoCAD(1)》2023-2024學年第二學期期末試卷
- 2024年高考語文復習:散文化小說閱讀 專項練習題(含答案解析)
- 2024年河南省安陽市中考模擬考試數學模擬預測題(含答案)
- 汗青堂叢書013百年戰爭簡史
- 中華人民共和國愛國主義教育法
- 2022-2023學年北京市海淀區八年級下學期期中考生物試卷 含詳解
- 美容院背部培訓課件
- 樓頂發光字采購安裝投標方案
- 組建生物質燃料公司方案
- 干部履歷表(中共中央組織部2015年制)
- 鐵路轉轍機 ZDJ9型電動轉轍機認知
- 【一例犬胃扭轉的診斷與治療5400字(論文)】
評論
0/150
提交評論