2023屆云南省楚雄彝族自治州大姚縣第一中學高三(最后沖刺)數學試卷含解析_第1頁
2023屆云南省楚雄彝族自治州大姚縣第一中學高三(最后沖刺)數學試卷含解析_第2頁
2023屆云南省楚雄彝族自治州大姚縣第一中學高三(最后沖刺)數學試卷含解析_第3頁
2023屆云南省楚雄彝族自治州大姚縣第一中學高三(最后沖刺)數學試卷含解析_第4頁
2023屆云南省楚雄彝族自治州大姚縣第一中學高三(最后沖刺)數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點為的三條中線的交點,且,,則的值為()A. B. C. D.2.為計算,設計了如圖所示的程序框圖,則空白框中應填入()A. B. C. D.3.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發,需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.4.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數不全相同的正多邊形為面的多面體,體現了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.5.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-16.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.57.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或8.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.9.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°10.歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種值的表達式紛紛出現,使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執行該程序框圖,已知輸出的,若判斷框內填入的條件為,則正整數的最小值是A. B. C. D.11.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.12.已知(為虛數單位,為的共軛復數),則復數在復平面內對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.14.已知函數,若,則___________.15.根據如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.16.已知數列為正項等比數列,,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)已知函數,.(1)求函數在處的切線方程;(2)當時,證明:對任意恒成立.20.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.21.(12分)設等差數列滿足,.(1)求數列的通項公式;(2)求的前項和及使得最小的的值.22.(10分)已知函數的最大值為2.(Ⅰ)求函數在上的單調遞減區間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.2、A【解析】

根據程序框圖輸出的S的值即可得到空白框中應填入的內容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內的條件,執行循環體,a=1,S=1,i=1滿足判斷框內的條件,執行循環體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內的條件,執行循環體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規律可知:滿足判斷框內的條件,執行循環體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應該不滿足判斷框內的條件,退出循環,輸出S的值,所以判斷框中的條件應是i<1.故選:A.【點睛】本題考查了當型循環結構,當型循環是先判斷后執行,滿足條件執行循環,不滿足條件時算法結束,屬于基礎題.3、C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.4、D【解析】

根據三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.5、D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.6、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.7、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.8、D【解析】

根據X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數的性質求出其最大值為,進而得出結論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結合了概率?二次函數等相關知識,需要學生具備一定的計算能力,屬于中檔題.9、C【解析】

如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.10、B【解析】

初始:,,第一次循環:,,繼續循環;第二次循環:,,此時,滿足條件,結束循環,所以判斷框內填入的條件可以是,所以正整數的最小值是3,故選B.11、A【解析】

令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.12、D【解析】

設,由,得,利用復數相等建立方程組即可.【詳解】設,則,所以,解得,故,復數在復平面內對應的點為,在第四象限.故選:D.【點睛】本題考查復數的幾何意義,涉及到共軛復數的定義、復數的模等知識,考查學生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設出圓心,由圓的方程與橢圓方程聯立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關于x軸對稱,所以圓心E在x軸上,設圓心E為,則圓的方程為,聯立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉化與化歸思想,本題關鍵是求出B、D橫坐標,是一道有區分度的壓軸填空題.14、【解析】

根據題意,利用函數奇偶性的定義判斷函數的奇偶性,利用函數奇偶性的性質求解即可.【詳解】因為函數,其定義域為,所以其定義域關于原點對稱,又,所以函數為奇函數,因為,所以.故答案為:【點睛】本題考查函數奇偶性的判斷及其性質;考查運算求解能力;熟練掌握函數奇偶性的判斷方法是求解本題的關鍵;屬于中檔題、常考題型.15、【解析】

滿足條件執行,否則執行.【詳解】本題實質是求分段函數在處的函數值,當時,.故答案為:1【點睛】本題考查條件語句的應用,此類題要做到讀懂算法語句,本題是一道容易題.16、27【解析】

利用等比數列的性質求得,結合其下標和性質和均值不等式即可容易求得.【詳解】由等比數列的性質可知,則,.當且僅當時取得最小值.故答案為:.【點睛】本題考查等比數列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯立,消元并整理得,設,,則可得,,由求出,將直線方程與聯立,得,求得,計算,設.顯然,構造,由導數的知識求得其最小值,同時可得直線的方程.【詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯立,得即設,,則,將直線:與聯立,得∴∴設.顯然構造在上恒成立所以在上單調遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數的性質求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據步驟相應給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設而不求”的思想方法,即設交點坐標為,設直線方程,直線方程與橢圓方程聯立并消元,然后用韋達定理得(或),把這個代入其他條件變形計算化簡得出結論,本題屬于難題,對學生的邏輯推理、運算求解能力有一定的要求.18、.【解析】試題分析:,所以.試題解析:B.因為,所以.19、(1)(2)見解析【解析】

(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【詳解】(1),,,函數在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數在上單調遞減;當時,,函數在上單調遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數求切線方程的解法和根據導數求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.20、(1)(2)直線l的斜率為或【解析】

(1)根據已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯立,轉化為,借助向量的數量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.21、(1)(2);時,取得最小值【解析】

(1)設等差數列的公差為,由,結合已知,聯立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數列的公差為,由及,得解得數列的通項

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論