河南省洛陽市汝陽縣實驗高中2025屆高三下學期期末調研考試數學試題_第1頁
河南省洛陽市汝陽縣實驗高中2025屆高三下學期期末調研考試數學試題_第2頁
河南省洛陽市汝陽縣實驗高中2025屆高三下學期期末調研考試數學試題_第3頁
河南省洛陽市汝陽縣實驗高中2025屆高三下學期期末調研考試數學試題_第4頁
河南省洛陽市汝陽縣實驗高中2025屆高三下學期期末調研考試數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省洛陽市汝陽縣實驗高中2025屆高三下學期期末調研考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.2.()A. B. C. D.3.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該校考生的升學情況,統計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同4.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.5.已知復數,則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.37.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-288.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于9.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.10.已知函數有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.11.已知實數滿足約束條件,則的最小值是A. B. C.1 D.412.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立二、填空題:本題共4小題,每小題5分,共20分。13.若函數,則__________;__________.14.設向量,,且,則_________.15.己知函數,若曲線在處的切線與直線平行,則__________.16.已知向量,且,則實數的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.18.(12分)已知圓O經過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.19.(12分)每年3月20日是國際幸福日,某電視臺隨機調查某一社區人們的幸福度.現從該社區群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數,結果見如圖所示莖葉圖,其中以小數點前的一位數字為莖,小數點后的一位數字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸福”.(Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸福”的概率;(Ⅱ)以這18人的樣本數據來估計整個社區的總體數據,若從該社區(人數很多)任選3人,記表示抽到“很幸福”的人數,求的分布列及.20.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.21.(12分)若養殖場每個月生豬的死亡率不超過,則該養殖場考核為合格,該養殖場在2019年1月到8月養殖生豬的相關數據如下表所示:月份1月2月3月4月5月6月7月8月月養殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數/只293749537798126145(1)從該養殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據1月到8月的數據,求出月利潤y(十萬元)關于月養殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養殖中,月利潤與月養殖量仍然服從(2)中的關系,若9月份的養殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數據:.22.(10分)已知函數,.(1)當時,討論函數的單調性;(2)若,當時,函數,求函數的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.2、D【解析】

利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.3、A【解析】

設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統計類的題目.4、A【解析】

根據平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數形結合的思想,屬于難題.5、A【解析】

利用復數除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數除法運算,考查復數對應點的坐標所在象限,屬于基礎題.6、C【解析】

設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【點睛】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.7、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.8、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質及其推論.9、D【解析】

討論,,三種情況,求導得到單調區間,畫出函數圖像,根據圖像得到答案.【詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【點睛】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.10、C【解析】

先求導得(),由于函數有兩個不同的極值點,,轉化為方程有兩個不相等的正實數根,根據,,,求出的取值范圍,而有解,通過分裂參數法和構造新函數,通過利用導數研究單調性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數有兩個不同的極值點,,所以方程有兩個不相等的正實數根,于是有解得.若不等式有解,所以因為.設,,故在上單調遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數研究函數單調性、最值來求參數取值范圍,以及運用分離參數法和構造函數法,還考查分析和計算能力,有一定的難度.11、B【解析】

作出該不等式組表示的平面區域,如下圖中陰影部分所示,設,則,易知當直線經過點時,z取得最小值,由,解得,所以,所以,故選B.12、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.二、填空題:本題共4小題,每小題5分,共20分。13、01【解析】

根據分段函數解析式,代入即可求解.【詳解】函數,所以,.故答案為:0;1.【點睛】本題考查了分段函數求值的簡單應用,屬于基礎題.14、【解析】

根據向量的數量積的計算,以及向量的平方,簡單計算,可得結果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標計算,主要考查計算,屬基礎題.15、【解析】

先求導,再根據導數的幾何意義,有求解.【詳解】因為函數,所以,所以,解得.故答案為:【點睛】本題考查導數的幾何意義,還考查運算求解能力以及數形結合思想,屬于基礎題.16、【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】

(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.18、(1);(2)或【解析】

(1)先由題意得出,可得出與的等量關系,然后將點的坐標代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進行分類討論,當直線的斜率不存在時,可求出,然后進行檢驗;當直線的斜率存在時,可設直線的方程為,設點,先由直線與圓相切得出與之間的關系,再將直線的方程與橢圓的方程聯立,由韋達定理,利用弦長公式并結合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經過橢圓的上下頂點,所以橢圓焦距等于短軸長,可得,又點在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當直線不存在斜率時,解得,不符合題意;當直線存在斜率時,設其方程為,因為直線與圓相切,所以,即.將直線與橢圓的方程聯立,得:,判別式,即,設,則,所以,解得,所以直線的傾斜角為或.【點睛】求橢圓標準方程的方法一般為待定系數法,根據條件確定關于的方程組,解出,從而寫出橢圓的標準方程.解決直線與橢圓的位置關系的相關問題,其常規思路是先把直線方程與橢圓方程聯立,消元、化簡,然后應用根與系數的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單.19、(Ⅰ).(Ⅱ)見解析.【解析】

(Ⅰ)人中很幸福的有人,可以先計算其逆事件,即人都認為不很幸福的概率,再用減去人都認為不很幸福的概率即可;(Ⅱ)根據題意,隨機變量,列出分布列,根據公式求出期望即可.【詳解】(Ⅰ)設事件抽出的人至少有人是“很幸福”的,則表示人都認為不很幸福(Ⅱ)根據題意,隨機變量,的可能的取值為;;;所以隨機變量的分布列為:所以的期望【點睛】本題考查了離散型隨機變量的概率分布列,數學期望的求解,概率分布中的二項分布問題,屬于常規題型.20、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯立,消元并整理得,設,,則可得,,由求出,將直線方程與聯立,得,求得,計算,設.顯然,構造,由導數的知識求得其最小值,同時可得直線的方程.【詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯立,得即設,,則,將直線:與聯立,得∴∴設.顯然構造在上恒成立所以在上單調遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數的性質求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據步驟相應給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設而不求”的思想方法,即設交點坐標為,設直線方程,直線方程與橢圓方程聯立并消元,然后用韋達定理得(或),把這個代入其他條件變形計算化簡得出結論,本題屬于難題,對學生的邏輯推理、運算求解能力有一定的要求.21、(1);(2);(3)利潤約為111.2萬元.【解析】

(1)首先列出基本事件,然后根據古典概型求出恰好兩個月合格的概率;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論