




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古呼市二中2025年高三第五次月考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.2.某工廠一年中各月份的收入、支出情況的統計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元3.設集合,,則()A. B.C. D.4.設為自然對數的底數,函數,若,則()A. B. C. D.5.已知集合,,則()A. B.C. D.6.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.7.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.8.設函數,若函數有三個零點,則()A.12 B.11 C.6 D.39.等比數列中,,則與的等比中項是()A.±4 B.4 C. D.10.已知函數滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.11.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.12.的展開式中,項的系數為()A.-23 B.17 C.20 D.63二、填空題:本題共4小題,每小題5分,共20分。13.棱長為的正四面體與正三棱錐的底面重合,若由它們構成的多面體的頂點均在一球的球面上,則正三棱錐的內切球半徑為______.14.連續2次拋擲一顆質地均勻的骰子(六個面上分別標有數字1,2,3,4,5,6的正方體),觀察向上的點數,則事件“點數之積是3的倍數”的概率為____.15.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.16.函數的單調增區間為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.20.(12分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.21.(12分)已知函數.(1)若,,求函數的單調區間;(2)時,若對一切恒成立,求a的取值范圍.22.(10分)如圖1,與是處在同-個平面內的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.2.D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.3.D【解析】
利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.4.D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.5.A【解析】
根據對數性質可知,再根據集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數的性質比較大小,集合交集的簡單運算,屬于基礎題.6.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.7.D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.8.B【解析】
畫出函數的圖象,利用函數的圖象判斷函數的零點個數,然后轉化求解,即可得出結果.【詳解】作出函數的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數形結合以及函數與方程的應用,考查轉化思想以及計算能力,屬于常考題型.9.A【解析】
利用等比數列的性質可得,即可得出.【詳解】設與的等比中項是.
由等比數列的性質可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.10.C【解析】
由題意可知,代入函數表達式即可得解.【詳解】由可知函數是周期為4的函數,.故選:C.【點睛】本題考查了分段函數和函數周期的應用,屬于基礎題.11.B【解析】
雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.12.B【解析】
根據二項式展開式的通項公式,結合乘法分配律,求得的系數.【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數為17.故選:B【點睛】本小題考查二項式定理及展開式系數的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側棱長,可得正三棱錐的三條側棱兩兩相互垂直,進而求出體積與表面積,設內切圓的半徑,由等體積,求出內切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設三角形的外接圓的半徑為,則,解得,設外接球的半徑為,則可得,即,解得,設正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側棱兩兩相互垂直,所以,設內切球的半徑為,,即解得:.故答案為:.【點睛】本題考查多面體與球的內切和外接問題,考查轉化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.14.【解析】總事件數為,目標事件:當第一顆骰子為1,2,4,6,具體事件有,共8種;當第一顆骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。15.【解析】
根據條件及向量數量積運算求得,連接,由三角形中線的性質表示出.根據向量的線性運算及數量積公式表示出,結合二次函數性質即可求得最小值.【詳解】根據題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當時,取得最小值因而故答案為:【點睛】本題考查了平面向量數量積的綜合應用,向量的線性運算及模的求法,二次函數最值的應用,屬于中檔題.16.【解析】
先求出導數,再在定義域上考慮導數的符號為正時對應的的集合,從而可得函數的單調增區間.【詳解】函數的定義域為.,令,則,故函數的單調增區間為:.故答案為:.【點睛】本題考查導數在函數單調性中的應用,注意先考慮函數的定義域,再考慮導數在定義域上的符號,本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點睛】本題考查正弦定理以及余弦定理的應用,三角形的面積公式,也考查計算能力,屬于基礎題.18.(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.19.(1)見解析(2)【解析】試題分析:(1)根據已知條件由線線垂直得出線面垂直,再根據面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據線面角公式代入坐標求得結果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設,則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標系,則,∴,所以,設為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.20.(1);(2).【解析】
(1)根據拋物線的定義,結合已知條件,即可容易求得結果;(2)設出直線的方程,聯立拋物線方程,根據直線與拋物線相交則,結合由得到的斜率關系,即可求得斜率的范圍.【詳解】(1)因為動圓與圓外切,并與直線相切,所以點到點的距離比點到直線的距離大.因為圓的半徑為,所以點到點的距離等于點到直線的距離,所以圓心的軌跡為拋物線,且焦點坐標為.所以曲線的方程.(2)設,,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范圍為.【點睛】本題考查由拋物線定義求拋物線方程,涉及直線與拋物線相交結合垂直關系求斜率的范圍,屬綜合中檔題.21.(1)單調遞減區間為,單調遞增區間為;(2)【解析】
(1)求導,根據導數與函數單調性關系即可求出.(2)解法一:分類討論:當時,觀察式子可得恒成立;當時,利用導數判斷函數為單調遞增,可知;當時,令,由,,根據零點存在性定理可得,進而可得在上,單調遞減,即不滿足題意;解法二:通過分離參數可知條件等價于恒成立,進而記,問題轉化為求在上的最小值問題,通過二次求導,結合洛比達法則計算可得結論.【詳解】(1)當,,,,令,解得,當時,,當時,,在上單調遞減,在上單調遞增.(2)解法一:當時,函數,若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數,所以,即時滿足題意;若時,令,則,所以在上單調遞增,,,可知,一定存在使得,且當時,,所以在上,單調遞減,從而有時,,不滿足題意;綜上可知,實數a的取值范圍為.解法二:當時,函數,又當時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調遞增,,恒成立,從而在上單調遞增,,由洛比達法則可知,,,解得.實數a的取值范圍為.【點睛】本題考查利用導數研究函數的單調性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數法等技巧、涉及到洛比達法則等知識,注意解題方法的積累,屬于難題.22.(1)證明見解析(2)(3)【解析】
根據折疊圖形,,由線面垂直的判定定理可得平面,再根據平面,得到.(2)根據,以為坐標原點,為軸建立空間直角坐標系,根據,可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年福建省漳州市高考歷史質檢試卷(三)(含答案)
- 2025至2031年中國單用針座行業投資前景及策略咨詢研究報告
- 2025至2030年中國耐腐蝕液下泵數據監測研究報告
- 2023年成都公交集團招聘筆試參考題庫附帶答案詳解
- 火災案例和逃生知識
- 液壓基礎知識培訓
- 消防知識普及專題講座課件
- 提升大氣顆粒物采樣分析精度要求
- 健全學生課間零食合理選擇建議
- 租用羽毛球場地合同
- 大美新疆旅游推介旅游宣傳介紹PPT圖文課件
- 幼兒視力保護的方法與思考 論文
- 淺談幼兒園自主游戲中教師的有效指導策略 論文
- erp系統運行使用管理制度
- 大國工匠彭祥華事跡介紹PPT課件(帶內容)
- 脊柱骨折的急救與護理新
- TISC 0022-2023 數字孿生城市平臺技術要求
- 小學英語人教(精通)版三年級起點《Fun time 1 Recycle 1》優秀教學設計五年級下冊-五年級英語教案
- 【施工】電信入圍施工組織方案
- 2022《煤礦安全規程》
- 精選常熟市化工企業名單
評論
0/150
提交評論