北京市師大二附中2025年下學期第二次月考高三數學試題試卷_第1頁
北京市師大二附中2025年下學期第二次月考高三數學試題試卷_第2頁
北京市師大二附中2025年下學期第二次月考高三數學試題試卷_第3頁
北京市師大二附中2025年下學期第二次月考高三數學試題試卷_第4頁
北京市師大二附中2025年下學期第二次月考高三數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市師大二附中2025年下學期第二次月考高三數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.52.已知集合,則()A. B. C. D.3.公元前世紀,古希臘哲學家芝諾發表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米4.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.5.函數且的圖象是()A. B.C. D.6.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.17.關于函數,有下列三個結論:①是的一個周期;②在上單調遞增;③的值域為.則上述結論中,正確的個數為()A. B. C. D.8.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.9.已知復數,則的虛部為()A.-1 B. C.1 D.10.復數在復平面內對應的點為則()A. B. C. D.11.已知命題,,則是()A., B.,.C., D.,.12.我國南北朝時的數學著作《張邱建算經》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊分別為,已知,則的面積為___________.14.函數的極大值為________.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.16.設點P在函數的圖象上,點Q在函數的圖象上,則線段PQ長度的最小值為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數是減函數.(1)試確定a的值;(2)已知數列,求證:.18.(12分)已知函數,.(1)求函數的極值;(2)當時,求證:.19.(12分)某企業對設備進行升級改造,現從設備改造前后生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值,該項質量指標值落在區間內的產品視為合格品,否則視為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質量指標值頻數2184814162(1)求圖中實數的值;(2)企業將不合格品全部銷毀后,對合格品進行等級細分,質量指標值落在區間內的定為一等品,每件售價240元;質量指標值落在區間或內的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.若有一名顧客隨機購買兩件產品支付的費用為(單位:元),求的分布列和數學期望.20.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是線段上的動點,當點到平面距離最大時,求三棱錐的體積.21.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.22.(10分)在直角坐標系中,直線的參數方程為(為參數,).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

利用雙曲線的定義和條件中的比例關系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉化為a,b,c的關系式.2.A【解析】

考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運算,屬于基礎題.3.D【解析】

根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.4.D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.5.B【解析】

先判斷函數的奇偶性,再取特殊值,利用零點存在性定理判斷函數零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數,關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數圖象的判斷,考查了函數的性質,屬于中檔題.6.B【解析】

過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數,再求函數的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.7.B【解析】

利用三角函數的性質,逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調遞增,②錯誤;③因為,所以是偶函數,又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調遞增,所以,的值域為,③錯誤;綜上,正確的個數只有一個,故選B.【點睛】本題主要考查三角函數的性質應用.8.C【解析】

根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.9.A【解析】

分子分母同乘分母的共軛復數即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數的除法運算,考查學生運算能力,是一道容易題.10.B【解析】

求得復數,結合復數除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數及其坐標的對應,考查復數的除法運算,屬于基礎題.11.B【解析】

根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.12.C【解析】設這十等人所得黃金的重量從大到小依次組成等差數列則由等差數列的性質得,故選C二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.14.【解析】

對函數求導,根據函數單調性,即可容易求得函數的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數有極大值.故答案為:.【點睛】本題考查利用導數研究函數的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.15.①②③【解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.16.【解析】

由解析式可分析兩函數互為反函數,則圖象關于對稱,則點到的距離的最小值的二倍即為所求,利用導函數即可求得最值.【詳解】由題,因為與互為反函數,則圖象關于對稱,設點為,則到直線的距離為,設,則,令,即,所以當時,,即單調遞減;當時,,即單調遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數的性質的應用,考查利用導函數研究函數的最值問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數得,對任意的,都有恒成立,構造函數,通過求導判斷它的單調性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數,且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數,然后再證明恒成立即可,構造函數,,通過求導證明即可.【詳解】解:(Ⅰ)的定義域為,.由是減函數得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數,且可得,當時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調遞增,∴在上單調遞減,而,∴當時,恒成立,∴在上單調遞減,即時,,∴當時,.∵,∴當時,,即②.綜上①②可得,.【點睛】本題考查了導數與函數的單調性的關系,考查了函數的最值,考查了構造函數的能力,考查了邏輯推理能力與計算求解能力,屬于難題.,18.(1)的極小值為,無極大值.(2)見解析.【解析】

(1)對求導,確定函數單調性,得到函數極值.(2)構造函數,證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調遞減,在上單調遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調遞減,在上單調遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數的單調性,極值,不等式的證明,構造函數是解題的關鍵.19.(1)(2)詳見解析【解析】

(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數分布表知一等品、二等品、三等品的概率分別為.,選2件產品,支付的費用的所有取值為240,300,360,420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.【詳解】解:(1)據題意,得所以(2)據表1分析知,從所有產品中隨機抽一件是一等品、二等品、三等品的概率分別為.隨機變量的所有取值為240,300,360,420,480.隨機變量的分布列為240300360420480所以(元)【點睛】本題考查頻率分布直方圖,頻數分布表,考查隨機變量的概率分布列和數學期望,解題時掌握性質:頻率分布直方圖中所有頻率和為1.本題考查學生的數據處理能力,屬于中檔題.20.(1)見解析(2)【解析】

(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點,可證平面,從而得,同理得),因此點到直線的距離即為點到平面的距離,由平面幾何知識易得最大值,然后可計算體積.【詳解】(1)證明:連接與交于,連接,因為是菱形,所以為的中點,又因為為的中點,所以,因為平面平面,所以平面.(2)解:取中點,連接,因為四邊形是菱形,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論