




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市七校聯(lián)考2024-2025學(xué)年高三一輪復(fù)習(xí)第五次質(zhì)檢(1月)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)2.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.3.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點(diǎn)的()A.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度B.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度C.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度D.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度4.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.5.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.6.已知冪函數(shù)的圖象過點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.7.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.38.已知集合,則()A. B. C. D.9.已知橢圓的左、右焦點(diǎn)分別為、,過點(diǎn)的直線與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.10.已知是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.11.已知圓關(guān)于雙曲線的一條漸近線對(duì)稱,則雙曲線的離心率為()A. B. C. D.12.已知函數(shù),當(dāng)時(shí),恒成立,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、為正實(shí)數(shù),直線截圓所得的弦長(zhǎng)為,則的最小值為__________.14.公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,若,,則的值為__________.15.若一個(gè)正四面體的棱長(zhǎng)為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.16.已知函數(shù)是定義在上的奇函數(shù),其圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),(其中是自然對(duì)數(shù)的底數(shù),若,則實(shí)數(shù)的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.18.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.19.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.20.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識(shí),高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個(gè)興趣小組中抽出人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這個(gè)人中要求兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望21.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.22.(10分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時(shí)的個(gè)數(shù),即可求解.【詳解】,,當(dāng),,,時(shí),為有理項(xiàng),共項(xiàng).故選:B.本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.2.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題3.C【解析】
根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),故可得;再將向左平移個(gè)單位長(zhǎng)度,故可得.故選:C.本題考查三角函數(shù)圖像的平移,涉及誘導(dǎo)公式的使用,屬基礎(chǔ)題.4.B【解析】
利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.5.D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.6.A【解析】
根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.7.C【解析】
先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8.B【解析】
計(jì)算,再計(jì)算交集得到答案【詳解】,表示偶數(shù),故.故選:.本題考查了集合的交集,意在考查學(xué)生的計(jì)算能力.9.D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長(zhǎng)相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.10.C【解析】
如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.11.C【解析】
將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,所以.所以.故選:C本題主要考查圓的方程及對(duì)稱性,還有雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.12.A【解析】
分析可得,顯然在上恒成立,只需討論時(shí)的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價(jià)于,進(jìn)而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當(dāng)時(shí),等價(jià)于,因?yàn)?所以.設(shè),由,顯然在上單調(diào)遞增,因?yàn)?所以等價(jià)于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先根據(jù)弦長(zhǎng),半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長(zhǎng)為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則.故答案為:.本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對(duì)目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.14.56【解析】
根據(jù)已知條件求等比數(shù)列的首項(xiàng)和公比,再代入等比數(shù)列的通項(xiàng)公式,即可得到答案.【詳解】,,.故答案為:.本題考查等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.15.【解析】
將四面體補(bǔ)成一個(gè)正方體,通過正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長(zhǎng)為1,所以正方體的棱長(zhǎng)為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線,即,解得,所以球的表面積為.本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長(zhǎng),得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.16.【解析】
先推導(dǎo)出函數(shù)的周期為,可得出,代值計(jì)算,即可求出實(shí)數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關(guān)于直線對(duì)稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.本題考查利用函數(shù)的對(duì)稱性計(jì)算函數(shù)值,解題的關(guān)鍵就是結(jié)合函數(shù)的奇偶性與對(duì)稱軸推導(dǎo)出函數(shù)的周期,考查推理能力與計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.本題考查極坐標(biāo)方程與普通方程的互化,考查直線與圓的位置關(guān)系,是基礎(chǔ)題.18.(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標(biāo)方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(
II
)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用,即可求出結(jié)果.【詳解】(Ⅰ)由題意:曲線的直角坐標(biāo)方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因?yàn)橹本€的直角坐標(biāo)方程為:,又因曲線的左焦點(diǎn)為,將其代入中,得到,所以的極坐標(biāo)方程為.(Ⅱ)設(shè)橢圓的內(nèi)接矩形的頂點(diǎn)為,,,,所以橢圓的內(nèi)接矩形的周長(zhǎng)為:,所以當(dāng)時(shí),即時(shí),橢圓的內(nèi)接矩形的周長(zhǎng)取得最大值16.本題考查了曲線的參數(shù)方程,極坐標(biāo)方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,極徑的應(yīng)用,考查學(xué)生的求解運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19.(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.本題第一問考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.20.(Ⅰ);(Ⅱ)分布列見解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.本題主要考查古典概型的計(jì)算,考查隨機(jī)變量的分布列和期望的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.21.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.試題解析:(1)由題意知當(dāng)時(shí),,當(dāng)時(shí),,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點(diǎn)1、待定系數(shù)法求等差數(shù)列的通項(xiàng)公式;2、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.【易錯(cuò)點(diǎn)晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項(xiàng)公式、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和,屬于難題.“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 聘請(qǐng)顧問協(xié)議書
- 彩鋼瓦修復(fù)安全協(xié)議書
- 液化氣購銷合同協(xié)議書
- 現(xiàn)場(chǎng)建筑體變更協(xié)議書
- 學(xué)生碰牙齒調(diào)節(jié)協(xié)議書
- 理發(fā)店門店合同協(xié)議書
- 移動(dòng)代理協(xié)議書
- 維修補(bǔ)漏協(xié)議書
- 電瓶購置協(xié)議書
- 資助建房協(xié)議書
- 期末易錯(cuò)題型創(chuàng)新改編練習(xí)(專項(xiàng)練習(xí))六年級(jí)下冊(cè)數(shù)學(xué)人教版
- 《橋梁工程概況介紹》課件
- 2025年四川成都道德與法制中考試卷(無)
- 2024年不動(dòng)產(chǎn)登記代理人《地籍調(diào)查》考試題庫大全(含真題、典型題)
- 中醫(yī)基礎(chǔ)學(xué)題庫(附答案)
- 大學(xué)美育知到智慧樹章節(jié)測(cè)試課后答案2024年秋長(zhǎng)春工業(yè)大學(xué)
- 2024年秋《MySQL數(shù)據(jù)庫應(yīng)用》形考 實(shí)驗(yàn)訓(xùn)練1 在MySQL中創(chuàng)建數(shù)據(jù)庫和表答案
- 《數(shù)據(jù)資產(chǎn)會(huì)計(jì)》 課件 第五章 數(shù)據(jù)資產(chǎn)的價(jià)值評(píng)估
- 合同到期不續(xù)簽的模板
- 北京市2018年中考?xì)v史真題試卷(含答案)
- (完整版)新概念英語第一冊(cè)單詞表(打印版)
評(píng)論
0/150
提交評(píng)論