




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
International
TransportForum
197
Roundtable
AIMachineLearningandRegulation:TheCaseofAutomatedVehicles
SummaryandConclusions
iiAI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025
TheInternationalTransportForum
TheInternationalTransportForumisanintergovernmentalorganisationwith69membercountries.ItactsasathinktankfortransportpolicyandorganisestheAnnualSummitoftransportministers.ITFistheonlyglobalbodythatcoversalltransportmodes.TheITFispoliticallyautonomousandadministrativelyintegratedwiththeOECD.
TheITFworksfortransportpoliciesthatimprovepeoples’lives.Ourmissionistofosteradeeperunderstandingoftheroleoftransportineconomicgrowth,environmentalsustainabilityandsocialinclusionandtoraisethepublicprofileoftransportpolicy.
TheITForganisesglobaldialogueforbettertransport.Weactasaplatformfordiscussionandpre-negotiationofpolicyissuesacrossalltransportmodes.Weanalysetrends,shareknowledgeandpromoteexchangeamongtransportdecisionmakersandcivilsociety.TheITF’sAnnualSummitistheworld’slargestgatheringoftransportministersandtheleadingglobalplatformfordialogueontransportpolicy.
TheMembersoftheForumare:Albania,Argentina,Armenia,Australia,Austria,Azerbaijan,Belarus,Belgium,BosniaandHerzegovina,Brazil,Bulgaria,Cambodia,Canada,Chile,China(People’sRepublicof),Colombia,CostaRica,Croatia,CzechRepublic,Denmark,DominicanRepublic,Estonia,Finland,France,Georgia,Germany,Greece,Hungary,Iceland,India,Ireland,Israel,Italy,Japan,Kazakhstan,Korea,Latvia,Liechtenstein,Lithuania,Luxembourg,Malta,Mexico,RepublicofMoldova,Mongolia,Montenegro,Morocco,theNetherlands,NewZealand,NorthMacedonia,Norway,Oman,Poland,Portugal,Romania,RussianFederation,SaudiArabia,Serbia,SlovakRepublic,Slovenia,Spain,Sweden,Switzerland,Tunisia,Türkiye,Ukraine,theUnitedArabEmirates,theUnitedKingdom,theUnitedStatesandUzbekistan.
InternationalTransportForum
2rueAndréPascalF-75775ParisCedex16
contact@
ITFDisclaimer
Citethisworkas:ITF(2025),AI,MachineLearningandRegulation:TheCaseofAutomatedVehicles,OECDPublishing,Paris.
AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025iii
Acknowledgements
ThisreportbuildsonexpertdiscussionsduringanITFRoundtable,“ArtificialIntelligence,MachineLearningandRegulation”,heldinParisandvirtuallyon26-27January2023.Dr.MarkusReinhardt(GermanCentreforRailTrafficResearch)chairedtheRoundtable.TheITFwouldliketothankthehigh-levelparticipationoftheGermanFederalMinistryforDigitalandTransport,highlightedbytheopeningremarkofMrStefanSchnorr,theStateSecretaryoftheGermanFederalMinistryforDigitalandTransport,whoremindedparticipantsoftheimportanceofAIinthefutureoftransport.
AttheITF,ChanggiLeecoordinatedtheprojectalongsideCamilleCombe.ChanggiLeeandPhilippeCristauthoredthereportwithsubstantiveinputsfromCamilleCombe.EugineRohelpedwiththeco-ordinationoftheRoundtableeventandtooknotesofdiscussions.PhilippeCristwasresponsibleforoverallqualitycontrolandCamilleLarmanoumanagedtheeditorialprocess.MilaIglesiasandApostolosSkourtashelpedorganisetheRoundtableevent.ThisRoundtableReportispartoftheITF’scoreProgrammeofWorkfor2022-23,co-ordinatedbyJagodaEgelandandOrlaMcCarthy,andhasbeenapprovedbytheITF’sTransportResearchCommittee.
TheauthorswouldliketothankGianmarcoBaldini(JointResearchCentre,EuropeanCommission),FlorentPerronnin(NaverLabs),MartinRuss(AustriaTech),andWilliamH.Widen(UniversityofMiami)fortheirfeedbackonthereport.TheITFwouldliketothankMarkusReinhardtforchairingtheRoundtable.ThanksalsotoGregorioAmeyugo(CEAList),SiddarthaKhastgir(UniversityofWarwick),LouiseDennis(UniversityofManchester),LatifaOukhellou(UniversityGustaveEiffel),Marry“Missy”Commings(GeorgeMasonUniversity),GianmarcoBaldini(JointResearchCentre,EuropeanCommission),AidaJoaquinAcosta(MinistryofTransport,MobilityandUrbanAgenda,Spain),andMartinRuss(Austriatech)fortheirpresentationsduringtheRoundtable.AnnexAliststhenamesandaffiliationsoftheRoundtableparticipants.
ivAI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025
Tableofcontents
Executivesummary 1
Enterout themachine:Takingthe(human)driverofthevehicle4
Automatedarenotevenacross vehicledeploymentlevelsmodes4
Safetyfirst,allotherutilitarianconsiderationslater 6
AssessingversustrustAVsystem vehiclesafetyensuringinsafeperformance9
Whatto andwhencertify?11
IncludingAI-specificchallengesinAVassessment safety12
PolicyTakeaways 15
HowAIconfoundshumanoversightandhowtoensureitstrustworthiness 16
Anatomyofdriving:whatconstitutesdrivingtasks,andhowdoesAI performthem?16
EnsuringAI’sKeyAI trustworthiness:elementsandlifecycle20
PolicyTakeaways 25
RegulatoryconsiderationstoensuretrustworthyAIineachdimensionoftheAIlifecycle 26
WhatDataRequiredVehicles? isforAutomated26
DevelopmenttoDeployment:VerifyingAIModels 30
Co-evolvingwithAVs:FromAVtoAVstransport deploymentmakingworkforbetter38
PolicyTakeaways 40
References 41
AnnexA.ListRoundtable ofparticipants48
TABLEOFCONTENTS
AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2002v
Figures
Figure.MachineLearningConceptsClasses 1and10
Figure 2.Multi-phasetesting,verificationandvalidationofAVs13
Figure.Schematic 3representationofdynamicdrivingtasks16
FigureExamples 4.ofAItechniquesusedforautomateddriving19
FigureSystemstressresponse 5.scenarios22
FigureTheFiveDimensionsAISystemLifecycle 6.ofthe24
Figure.Thetypesamap 7fourofdatainlocaldynamic27
Figure 8Skill-Rule-Knowledge-Expert(SRKE)Taxonomy31
Figure.Machineto 9learningimagerecognitionvulnerabilitiesadversarialattacks33
Figure.Test,Evaluation,VerificationValidation(TEVV)Environments 10and34
Figure.AnAIon 11exampleofmakingdifferentdecisionbasedthesimilardatainterpretations35
Figure.Explainability 12andinterpretabilitybydesignformachinelearningapplications35
Figure.FaultAVs 13tolerancemodesfor36
Tables
Table.SummaryFittsListacrossaspects1ofofstrengthsandweaknessesvariousoffunctionallocation
betweenhumansandhardware/softwaresystems 18
Boxes
Boxreport 1.Terminologyusedinthis5
BoxArtificial 2.Intelligenceinbrief10
Box.Automationassessment3ofdrivingcapabilitiesforroadvehiclesandtheparadigmshiftforvehicle
13
BoxEitheryouorSkipping 4.drive,Idrive:level3inregulation38
viAI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025
Abbreviationsandacronyms
ADAS
Advanceddriverassistancesystems
ADS
Automateddrivingsystem
ADS-DV
AutomatedDrivingSystems–DedicatedVehicles
AI
Artificialintelligence
ASDE
AuthorisedSelf-DrivingEntity
AV
AutomatedVehicle
*Inthisreport,AVsrefertohighlyorfullyautomatedvehiclescorrespondingtoSAEJ3016Level4andabovethatdoesnotrequirehumaninvolvementinperformingdrivingtaskswithindesignatedODDs(seeBox.1)
DDT
Dynamicdrivingtask
DMV
DepartmentofMotorVehicle
EIBD
ExplainableandInterpretablebyDesign
EM
EmergencyManoeuvre
FHWA
FederalHighwayAdministration
GDPR
GeneralDataProtectionRegulation(EU)
GPS
Globalpositioningsystem
ITF
InternationalTransportForum
LDM
Localdynamicmap
LIDAR
Lightdetectionandranging
MRM
MinimumRiskManoeuvre
NHTSA
NationalHighwayTrafficSafetyAdministration
NUiC
No-user-in-charge
OBU
On-boardunit
ODD
Operationaldesigndomain
OEM
Originalequipmentmanufacturer
PTO
Publictransportoperator
R&D
Researchanddevelopment
RSU
Roadsideunit
SAE
SocietyofAutomotiveEngineers
TEVV
Test,Evaluation,VerificationandValidation
UiC
User-in-charge
UNECE
UnitedNationsEconomicCommissionforEurope
V2I
Vehicle-to-infrastructure
V2V
Vehicle-to-vehicle
V2X
Vehicle-to-everything
AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025vii
Glossary
Automateddrivingsystem
ThehardwareandsoftwarethatarecollectivelycapableofperformingtheentireDDTonasustainedbasis,regardlessofwhetheritislimitedtoaspecificoperationaldesigndomain(ODD);thistermisusedspecificallytodescribeaLevel3,4,or5drivingautomationsystem.
(SAEInternational,2021a)
AuthorisedSelf-DrivingEntity
TheentitythatputsanAVforwardforauthorisationashavingself-drivingfeatures.Itmaybethevehiclemanufacturer,orasoftwaredesigner,orajointventurebetweenthetwo.
(LawCommissionofEnglandandWales&ScottishLawCommission.,2022)
AutomatedVehicle
AmotorvehicleequippedwithADSandthuscapableofperformingdynamicdrivingtasks.(seeBox.1forfurtherdetailsontheusageofthewordinthisreport)
Explainability
ThepropertyofanAIsystemtoexpressimportantfactorsinfluencingtheAIsystemresultsinawaythathumanscanunderstand.
ISO/IEC22989:2022(en),3.5.7
Interpretability
ThepropertyofanAIsystemthatelementsorfeaturescanbeassignedmeanings.DINSPEC92001-3:2023-04
PositiveRiskBalance(PRB)
Thepropositionthatacomputerdrivershouldbenolesssafe(andideallysaferthan)ahumandriver.
Koopman&Widen,2023Koopman&Widen,2024
Robustness
ThedegreetowhichanAIsystemcanmaintainitsleveloffunctionalcorrectnessunderanycircumstances.
ISO/IEC25059:2023(en)
Safety-criticalsystem
Asafety-criticalsystemdescribesasystemthatdirectlyaffectsthesafety,healthandwelfareofthepublicandwhosefailurecouldresultincriticalsafetyissuessuchasinfringementsofprivacy,financialloss,environmentalharm,seriousinjuries,orlossoflife.
(Laplanteetal.,2020;Moteff&Parfomak,2004;SrinivasAcharyulu&Seetharamaiah,2015)
Trustworthiness
Abilitytomeetstakeholderexpectationsinademonstrable,verifiableandmeasurableway
ISO/IEC20924:2024(en),3.1.33
1AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025
Executivesummary
Whatwedid
ThisreportexaminesthemainchallengesthatArtificialIntelligence(AI)posesinautomatedtransportsystemsandtheregulatoryapproachestoaddressthem.Thesediversechallengesbroadlyrelatetotechnical,regulatory,economic,societalandenvironmentalissues,includingissuesrelatingtotrainingdataqualityandrepresentation,developmentandverificationofAImodels,increasedvehicletravelandland-useimpacts,deskillingvehicleoperatorsandwiderlabourimpacts.ThereportprovidesacommonunderstandingofAI-basedautomatedtransportsystemsandtheprinciplesthatcanformthebasisofinstitutionalandregulatoryactionstoincreasethesafetyandsocialacceptabilityofusingAI-basedtransportsystems.ThereportisbasedondiscussionsheldatanITFRoundtableinJanuary2023andmaterialspreparedforit.Whilerecognisingtheuniquespecificitiesofeachtransportmode,thisreportmainlyfocusesontheautomationofroadvehicles.Nonetheless,somelessonsfromroadautomatedvehicles(AVs)willbeapplicabletoregulationsonAVsinotherdomains.
Whatwefound
Theautomatedoperationofvehicles–whetherbasedonorsupportedbyAIapplications–holdsgreatpotentialtomeetfuturemobilityneedsinanefficientandsafemanner.Torealisethefullpotentialofautomatedtransport,twoessentialconditionsmustbemettoensureitssafeandsecuredelivery:trustworthinessanddependability.Overcomingtechnicalandregulatorychallengesandminimisingriskswillhelpenhancesocialacceptanceanduptake.
TheSafeSystemapproachprovidesarobust,safety-firstframeworkfordevelopingAVregulations.TheSafeSystemapproachassumesthatmistakesandunexpecteddrivingandoperatingbehavioursareunavoidableandensuresthatthesedonotcontributetoseriousinjuriesordeaths.ThetenetsoftheSafeSystemapproachapplyequallytohuman-basedandAI-enabledvehicleoperation.PublicdialogueonidentifyingacceptablelevelsofriskinlinewiththeSafeSystemapproachisfundamental.TheuseofsimplecomparativeriskmetricsbetweenAVsandhuman-operatedvehiclesraisesrealpracticalchallengesinthecontextofAVcertification.Suchmetricsshouldbesupplementedbyamorefine-grainedapproachthatcompareslike-for-likesafetyperformanceandaddresseschangesinthedistributionofrisksamongthepopulation.
AVsperformoperatingtasks–previouslyperformedbyhumans–usinganAI-basedautomateddrivingsystemknownasADS–anAI-basedoperatingsystemfortrains,vesselsandaircraft.TheseAIsystemshavefundamentallydifferentdecision-makingprocessesfromhumans.Therefore,thetwoseparateregulatorysystemsthathavebeendevelopedforhumanvehicleoperatorsandhuman-operatedvehiclesarenotadaptedtoAVs.Consequently,automatedvehiclesrequirenewinstitutionalandregulatoryarrangementscoveringtheentiretyoftheAI-automatedoperatingsystem.
ThewholeAIlifecycle–includingthecontextinwhichtheAVsareoperated,thedatausedforAVs,theAImodels,outputsandtheirimpactonsociety–shouldbetakenintoaccountwhendevelopingregulationsforAVstoassurethattheAVsaresafe,secureandbeneficialenoughtobecomepartofourtransportsystems.Thoseregulationsmustincludebothtechnicalandnon-technicalmeasures.
EXECUTIVESUMMARY
AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF20252
ThekeyfactorthatwillunderpinthesustaineddeploymentandbroaderuseofAVsistrustinAVs’abilitytobesafe,sociallyacceptable,andbeneficial.Inadditiontotechnicalrobustnessandsafety,privacyprotection,unbiasedandethicalhandlingofdata,fairness,explainability,andtransparencyarerequiredatallstagesoftheAIlifecycletomakeAVssociallybeneficialandacceptable.
Toaddressdata-relatedissuessuchaspotentialbiasandprivacyinfringement,regulationsareneededtoverifythelawfulandethicalcollectionanduseofdata.Alsoimportantaretheregulatoryarrangementswhichallowpublicauthoritiesorvettedthirdpartiestoverifythatethicalrequirementsaresatisfiedintheacquisitionandprocessingofdata.SyntheticdatacanbebeneficialtotrainAIinrarecaseswhererealdatainputisscarce,butitcouldcreatenewbiasesifnotadequatelymanaged.PrinciplesandguidanceontheuseofsyntheticdataforthetrainingofAIsystemsare,therefore,crucial.
ThetrustworthinessofdataanditsvalidationdependonitsfairandaccurateselectionforthespecificAVusecase.Toprovideassuranceoftheirsafeandpredictableperformanceandrobustness,AIsystemsusedinAVoperationswillneedtobeverifiedandvalidated.ThefunctionsperformedbyAImodelsusedforvehicleoperationincludelocalisation,dynamicsceneunderstanding,pathplanning,control,andmanaginguserinteraction.Eachofthesefunctions–andoverallbehaviour–needstobeevaluatedusingsimulation,testsincontrolledenvironments,andtestsonrealtrafficsituations.Whilescenario-basedtestscanprovideassuranceforcommonscenarios,itmayprovemoredifficultforrareandedgecasesbecauseofthescarcityofavailabledata.Also,evaluationbasedonpredefined,knownscenarioscanleadtooverfittingbymanufacturers.Continuousscenarioupdatesanddiversification–includingbyusingrandomisedscenarios
–areessential.
AVsarenotimmunetoprogrammingerrorsorunexpectedbehaviour.Therefore,processesthataddressthisuncertaintyarenecessary,alongwithpoliciestobothmitigateAV’simpactsandimprovetheirsafetyperformanceex-post.Inlinewithexistingapproachesintheaviationsector,AVroll-outshouldincludeformalprotocolstoensurelessonsarelearnedandintegratedbyallactorsfollowingsafetyincidents.Such“antifragile”approacheswillhelptomaximiseAVsystemsafetydespiteuncertaintyaboutspecificfailuremodes.
Publicauthorities’institutionalcapacityandregulatorymeasuresshouldguaranteethetransparencyofAIdevelopmentanddeploymentprocess.TheyshouldalsoguaranteeasufficientlevelofexplainabilityofAIsystems–evenmoresowhenself-learningAItoolsareused.Thisrequirespublicauthorityinstitutionsandstafftocontinuouslybuildknowledgeandacquireskills.Achievingthisinthefaceofthecurrentconcentrationofskillsintheprivatesectorisachallenge.
TheoperationalenvironmentsofAVsplayanimportantroleintheirsafeuse.ExistingoperatingenvironmentsshouldbeimprovedtomakeiteasierforAVstofunctionsafely,withalowerchanceofencounteringrarebutriskycases.BetterinformationexchangebetweenAVsandotherroaduserscanhelpavoidpotentiallydangeroussituations.Machine-readablelawsandenhancingtheabilityforvehiclesandinfrastructuretocommunicatewillbebeneficialinreducingsuchrisks.
EXECUTIVESUMMARY
3AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF2025
Whatwerecommend
BaseAIregulatoryandinstitutionalmeasuresonsharedfundamentalprinciples
Fundamentalhumanrightsandthevaluesderivedfromthemlikesafety,fairness,explainability,andhumanoversightshouldformthecornerstoneofAVregulation.ToimprovethesafetyofAVsandtheentiretransportsystem,authoritiesshouldadopttheSafeSystemapproach.Publicauthoritiesmustensureallstakeholdersunderstandwhatconstitutesasafeandacceptablelevelofuncertainty.Moreover,authoritiesmustdesignandimplementappropriateregulatoryinterventionsmeanttodeliversafeoutcomes.
EnsurethatAIremainsexplainable,andthattrainingdataiscollectedandhandledinatransparentandverifiableway
AIsystemsshouldbedesignedinawaythatexplainshowspecificdecisionsaremadebasedonspecificinputs.Thisensuresthatidentifiedrisksdonotresurface.DataisacoreelementofAIsystems.DatahandlingproceduresandsystemsshouldensurethatAIsystemstrainingdatalendsitselftoidentifyingbiases,qualityissues,privacyissues,contaminationfromadversarialattacksorencoding/humanerrors
Mandatereportingofsafety-relevantdatafromautomatedvehicles
Incidentdataispartoftheessential“soft”infrastructurethatensuressafety.Publicauthoritiesshouldmandatethereportingofincidentdatathatissafety-relevant,includingwhenautomatedvehicleoperatingsystemsdisengageduringtestoperating.Dataregardingnearmissesmayalsoproverelevant.Publicauthoritiesshouldestablishmonitoring,reportingandevaluationprocessesthatimproveoverallsafetyperformanceaftereachincident.Metadataonsystemcapabilitiesshouldaccompanythesereports.Allthesedatashouldbeaccompaniedbyaggregateexposuredataondistancescoveredandtheenvironmentsinwhichthevehiclesoperated.Transportauthoritiesmustalsobuildinstitutionalcapacityandtechnicalproficiencytoenforceregulatorymeasures.
DevelopandupdateAVtestscenariosandprocedures
Scenario-basedtestswillplayacentralroleinassessingAVs'abilitiesinaholisticandsaferway.PublicauthoritiesshouldestablishinstitutionalandregulatorymechanismstoensurethattestscenariosarecontinuouslyupdatedandrandomisedtopreventmanufacturersfromdesigningAVperformancethatonlymeetsalimitedsetofpotentialscenarios.
EnsurethatphysicalanddigitalinfrastructuressupportsafeAVs
Enablingmachine-perceivablesignage,markings,andotherimportantvisualcuesinAVoperatingenvironmentsenhancessafeperformance.TofurtherincreasethesafetyofAVoperationandAVinteroperabilityacrossmultipleregionsandcontexts,establishmachine-readablerulesandregulations,andacommonframeworkforvehicle-to-vehicleandvehicle-to-infrastructurecommunications.ThebenefitsfromthesemeasuresextendbeyondtherealmofAVstoallinfrastructureusers.
AI,MACHINELEARNINGANDREGULATION:THECASEOFAUTOMATEDVEHICLES?OECD/ITF20254
Enterthemachine:Takingthe(human)
driveroutofthevehicle
Technologicaldevelopmentsencompassingbothvehiclesandsoftwarehaveenabledhighlevelsofvehicularautomation.Acrossallmodes,includingroad,railandshipping,highly-andfully-automatedvehicles(hereafterAVs)thatarecapableofoperatingthemselveswithouthumaninterventionwithinadesignatedoperatingenvironmentareexpectedtobroadlyimpactsocieties(Bahamonde-Birkeetal.,2018).
AVsareexpectedtohavemultiplefirst-orderimpacts(i.e.directeffectsontransport).AVsareexpectedbymanytoincreasetransportsafetyandimproveaccessibility(EuropeanCommission,2018;ITF,2023b).AVsarealsoexpectedtoreducegeneralisedtransportcostsduetothereplacementofqualifieddrivers,conductors,pilotsorcaptainsbyAI-enabledtechnologies.Second-orderimpacts(i.e.indirecteffectsontransport)includeimpactsontraveldemand,publicrevenue,andlabour,amongothers(ITF,2023a,2023b).However,alltheseexpectedimpactshaveyettomaterialiseasAVdeploymentcurrentlyremainsquitelow.Nonetheless,vigilanceiswarrantedtoensurethatAVdeploymentdoesnotsimplyreplacehumanerrorwithtechnologicalfailuresorflaws.
ForAVstobewidelydeployedandused,specifictechnicalandsocietalchallengesmustbeaddressedandovercome.AkeychallengeistodeveloptherightregulationstoensurethetrustworthinessofAVsinthesensethattheyarebothsafeenoughtobeoperatedalongsidehuman-operatedvehiclesandthattheiruseshouldworkforachievingvaluedsocietalgoalssuchasimprovedaccessibility,enhancedequity,reducedenvironmentalimpact,andeconomicdevelopment(ITF,2023b)
Automatedvehicledeploymentlevelsarenotevenacrossmodes
AVdeploymenthasprogressedunevenlyacrossroads,railways,andwaterways(Fiedleretal.,2019;ITF,2023b).Dependingonthemodeconsidered,differentlevelsofautonomy-correspondingtodifferentcapabilities-havebeendeveloped(e.g.SAElevels,MASSlevels,GradesofAutomationforrailways)(IEC,2014;IMO,2021;SAEInternational,2021a).
Theextenttowhichavehiclecanbeautomatedwilldependondifferentfactors,namely:
?thetypeofinfrastructure(e.g.road,rail,waterways),
?thedegreeofcontrolovertheoperationenvironment(i.e.openenvironment,closedenvironment),
?andthetypeofserviceconsidered(e.g.passengersorgoods).
Forexample,technologyforautomatedsubwayoperationiswidelyavailable,andautomatedsubwayprojectdeploymentstartedinthe1960s(ITF,2023b).However,unlikesubways,whicharetypicallyseparatedfromthesurroundingenvironmentbytunnelsorbarriers,automatedroadvehiclesincitiesinteractwithvariouselements,includingpedestriansandgenerallyhaveacomplexanddynamicoperationaldomain.Foralongtime,automatedvehiclesincitieswillhavetointeractwithabroadmixofvehiclesofvariousagesrunningontechnologieswithdifferingmaturitylevelsanddifferentlevelsofsophistication.Theirdeploymentisthusmuchmorecomplicated.Deploymentofhighlyautomatedvehiclesinprotectedcontexts(likeports,airports,andrail)posesfewerc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 資格認(rèn)證考試的考前準(zhǔn)備指南試題及答案
- 項(xiàng)目執(zhí)行中的協(xié)作精神試題及答案
- 國際金融理財(cái)師考試課程安排與試題答案
- 跟隨時(shí)代步伐注冊(cè)會(huì)計(jì)師考試新技能掌握試題及答案
- 2025年特許金融分析師考試統(tǒng)計(jì)學(xué)應(yīng)用試題及答案
- 員工薪酬福利晉升規(guī)定計(jì)劃
- 學(xué)科競賽組織與實(shí)施計(jì)劃
- 年度工作計(jì)劃的長期發(fā)展目標(biāo)
- 成員招募及留存的有效方法計(jì)劃
- 項(xiàng)目團(tuán)隊(duì)效能提升方法考題及答案
- 一年級(jí)信息技術(shù)下冊(cè) 在網(wǎng)上交流信息教學(xué)設(shè)計(jì) 清華版
- 廣東省2024-2025學(xué)年佛山市普通高中教學(xué)質(zhì)量檢測政治試卷及答案(二)高三試卷(佛山二模)
- 11.1 杠桿 課件 2024-2025學(xué)年教科版物理八年級(jí)下學(xué)期
- 搶救工作制度課件
- LOGO更換普通夾板作業(yè)課件
- 2025年415全民國家安全教育日主題班會(huì)課件
- 山東省東營市東營區(qū)勝利第一初級(jí)中學(xué)2024-2025學(xué)年九年級(jí)下學(xué)期一模英語試卷(含答案無聽力原文及音頻)
- 臨床決策支持系統(tǒng)在路徑優(yōu)化中的實(shí)踐案例
- 漢服實(shí)體店創(chuàng)業(yè)計(jì)劃書
- 2025-2030中國滑雪板行業(yè)深度調(diào)研及投資前景預(yù)測研究報(bào)告
- 婦產(chǎn)科課件-早產(chǎn)臨床防治指南(2024)解讀
評(píng)論
0/150
提交評(píng)論