2025屆浙江省紹興市高三下學期階段調研(二)數學試題_第1頁
2025屆浙江省紹興市高三下學期階段調研(二)數學試題_第2頁
2025屆浙江省紹興市高三下學期階段調研(二)數學試題_第3頁
2025屆浙江省紹興市高三下學期階段調研(二)數學試題_第4頁
2025屆浙江省紹興市高三下學期階段調研(二)數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省紹興市高三下學期階段調研(二)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.802.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.3.展開項中的常數項為A.1 B.11 C.-19 D.514.()A. B. C. D.5.若復數(為虛數單位)的實部與虛部相等,則的值為()A. B. C. D.6.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.7.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-38.元代數學家朱世杰的數學名著《算術啟蒙》是中國古代代數學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.69.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.10.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.11.設全集U=R,集合,則()A. B. C. D.12.在中,為中點,且,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標為______.14.若實數滿足約束條件,設的最大值與最小值分別為,則_____.15.執行右邊的程序框圖,輸出的的值為.16.已知,則=___________,_____________________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.18.(12分)已知函數.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數的定義域和值域.19.(12分)記數列的前項和為,已知成等差數列.(1)證明:數列是等比數列,并求的通項公式;(2)記數列的前項和為,求.20.(12分)已知函數.(Ⅰ)當時,求函數在上的值域;(Ⅱ)若函數在上單調遞減,求實數的取值范圍.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.22.(10分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.2、D【解析】

說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.3、B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.4、B【解析】

利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.5、C【解析】

利用復數的除法,以及復數的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復數的除法運算,復數的概念運用.6、A【解析】

根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.7、D【解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.8、B【解析】分析:根據流程圖中的可知,每次循環的值應是一個等比數列,公比為;根據流程圖中的可知,每次循環的值應是一個等比數列,公比為,根據每次循環得到的的值的大小決定循環的次數即可.詳解:記執行第次循環時,的值記為有,則有;記執行第次循環時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環結構和數列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數列關系(比如相鄰項滿足等比數列、等差數列的定義,是否是求數列的前和、前項積等).9、A【解析】

由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.10、C【解析】

設出兩人到達小王的時間,根據題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內,如圖所示:圖中陰影部分表示該不等式組的所表示的平面區域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區域,考查了數學運算能力.11、A【解析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.12、B【解析】

選取向量,為基底,由向量線性運算,求出,即可求得結果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.14、【解析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規劃求線性目標函數的最值.這種類型題目的主要思路是:首先根據題目所給的約束條件,畫出可行域;其次是求得線性目標函數的基準函數;接著畫出基準函數對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.15、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.16、?196?3【解析】

由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2;(2)【解析】分析:(1)將轉化為分段函數,求函數的最小值(2)分離參數,利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調遞減,在上單調遞增,所以的最小值為,即.(Ⅱ)因為恒成立,所以恒成立,當且僅當時,取得最小值,所以,即實數的最大值為.點睛:本題主要考查含兩個絕對值的函數的最值和不等式的應用,第二問恒成立問題分離參數,利用基本不等式求解很關鍵,屬于中檔題.18、(Ⅰ)(Ⅱ)函數的定義域為,值域為【解析】

(1)由為第二象限角及的值,利用同角三角函數間的基本關系求出及的值,再代入中即可得到結果.(2)函數解析式利用二倍角和輔助角公式將化為一個角的正弦函數,根據的范圍,即可得到函數值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數的定義域為.化簡,得,因為,且,,所以,所以.所以函數的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數的基本關系式,三角函數函數值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數關系式的問題,意在考查學生的轉化能力和計算求解能力,屬于常考題型.19、(1)證明見解析,;(2)【解析】

(1)由成等差數列,可得到,再結合公式,消去,得到,再給等式兩邊同時加1,整理可證明結果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數列,則,即,①當時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數列,,所以.(2),所以.【點睛】此題考查了數列遞推式,等比數列的證明,裂列相消求和,考查了學生分析問題和解決問題的能力,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數函數的單調性即可求解.(Ⅱ)根據對數函數的單調性可得在上單調遞增,再利用二次函數的圖像與性質可得解不等式組即可求解.【詳解】(Ⅰ)當時,,此時函數的定義域為.因為函數的最小值為.最大值為,故函數在上的值域為;(Ⅱ)因為函數在上單調遞減,故在上單調遞增,則解得,綜上所述,實數的取值范圍.【點睛】本題主要考查了利用對數函數的單調性求值域、利用對數型函數的單調區間求參數的取值范圍以及二次函數的圖像與性質,屬于中檔題.21、(1)見解析;(2)見解析【解析】

(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.22、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論