




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省宜昌市西陵區(qū)葛洲壩中學(xué)2025年高三下學(xué)期期末質(zhì)量調(diào)研(一模)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.32.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.13.若θ是第二象限角且sinθ=,則=A. B. C. D.4.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.5.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.6.設(shè)雙曲線(a>0,b>0)的一個(gè)焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長(zhǎng)為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.7.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.408.的展開(kāi)式中各項(xiàng)系數(shù)的和為2,則該展開(kāi)式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.409.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.10.設(shè)過(guò)拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為,則()A. B. C. D.11.已知復(fù)數(shù),則()A. B. C. D.212.寧波古圣王陽(yáng)明的《傳習(xí)錄》專門(mén)講過(guò)易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽(yáng)線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過(guò)C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.14.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長(zhǎng)棱的長(zhǎng)度是_____.15.已知函數(shù),則曲線在處的切線斜率為_(kāi)_______.16.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請(qǐng)選擇一個(gè)可能的組合,并求數(shù)列的通項(xiàng)公式;(2)記(1)中您選擇的的前項(xiàng)和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請(qǐng)求出的值;若沒(méi)有,請(qǐng)說(shuō)明理由.18.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實(shí)數(shù),,滿足,求證:.19.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.20.(12分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).(1)證明:點(diǎn)在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點(diǎn).若與的面積相等,求直線的斜率21.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫(xiě)出函數(shù)在上的零點(diǎn)個(gè)數(shù).22.(10分)數(shù)列滿足,,其前n項(xiàng)和為,數(shù)列的前n項(xiàng)積為.(1)求和數(shù)列的通項(xiàng)公式;(2)設(shè),求的前n項(xiàng)和,并證明:對(duì)任意的正整數(shù)m、k,均有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.【點(diǎn)睛】本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問(wèn)題,屬于基礎(chǔ)題.2、B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.3、B【解析】由θ是第二象限角且sinθ=知:,.所以.4、C【解析】
作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.5、C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問(wèn)題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.6、C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長(zhǎng)為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.7、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.8、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對(duì)應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對(duì)應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個(gè)因式相乘,若第1個(gè)括號(hào)提出x,從余下的5個(gè)括號(hào)中選2個(gè)提出x,選3個(gè)提出;若第1個(gè)括號(hào)提出,從余下的括號(hào)中選2個(gè)提出,選3個(gè)提出x.故常數(shù)項(xiàng)==-40+80=409、D【解析】
設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10、C【解析】
畫(huà)出圖形,將三角形面積比轉(zhuǎn)為線段長(zhǎng)度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫(xiě)出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長(zhǎng)的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯(cuò)的綜合題.11、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.12、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點(diǎn)睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因?yàn)閨PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因?yàn)辄c(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因?yàn)辄c(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點(diǎn)睛】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.14、【解析】
由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長(zhǎng)棱的長(zhǎng)度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,則該幾何體的體積為,,,因此,該棱錐的最長(zhǎng)棱的長(zhǎng)度為.故答案為:;.【點(diǎn)睛】本題考查由三視圖求體積、棱長(zhǎng),關(guān)鍵是由三視圖還原原幾何體,是中檔題.15、【解析】
求導(dǎo)后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點(diǎn)睛】本題考查切線斜率的求解問(wèn)題,考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計(jì)算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.②,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.(2)若選擇①,.則.若,,成等比數(shù)列,則,即,整理,得,即,此方程無(wú)正整數(shù)解,故不存在正整數(shù),使,,成等比數(shù)列.若選則②,,則,若,,成等比數(shù)列,則,即,整理得,因?yàn)闉檎麛?shù),所以.故存在正整數(shù),使,,成等比數(shù)列.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和,涉及到等比數(shù)列的性質(zhì),是一道中檔題.18、(1);(2)證明見(jiàn)詳解.【解析】
(1)將不等式的解集用表示出來(lái),結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因?yàn)榈慕饧癁?,所以,;?)由(1)由柯西不等式,當(dāng)且僅當(dāng),,,等號(hào)成立.【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法,利用柯西不等式證明不等式的問(wèn)題,屬于中檔題.19、(1);(2)1.【解析】
(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標(biāo)方程為,顯然直線l與曲線C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問(wèn)題,是一道容易題.20、(1)證明見(jiàn)解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點(diǎn)的橫坐標(biāo)即可證出;(2)根據(jù)線段的垂直平分線求出點(diǎn)的坐標(biāo),即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設(shè),,聯(lián)立消去,得,顯然,,則點(diǎn)的橫坐標(biāo),因?yàn)?,所以點(diǎn)在軸的右側(cè).(2)由(1)得點(diǎn)的縱坐標(biāo).即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因?yàn)榕c的面積相等,所以,解得.所以當(dāng)與的面積相等時(shí),直線的斜率.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系的應(yīng)用、根與系數(shù)的關(guān)系應(yīng)用,以及三角形的面積的計(jì)算,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.21、(Ⅰ);(Ⅱ)證明見(jiàn)解析;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【解析】
(Ⅰ)求出導(dǎo)數(shù),寫(xiě)出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個(gè)零點(diǎn),,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減,故在只有唯一的一個(gè)極大值;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC 19762:2025 EN Information technology - Automatic identification and data capture (AIDC) techniques - Vocabulary
- 【正版授權(quán)】 ISO 13402:2025 EN Surgical and dental hand instruments - Determination of resistance against autoclaving,corrosion and thermal exposure
- 【正版授權(quán)】 IEC 60614-1:1994 EN-D Conduits for electrical installations - Specification - Part 1: General requirements
- 【正版授權(quán)】 IEC 60335-2-75:2024 EXV-CMV EN Household and similar electrical appliances - Safety - Part 2-75: Particular requirements for commercial dispensing appliances and vending mac
- 勸學(xué)的課件講解
- 副腫瘤綜合征護(hù)理
- 小學(xué)春節(jié)安全教育
- 20xx年高端專業(yè)模版
- 上海師范大學(xué)天華學(xué)院《精讀二:文學(xué)與人生》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇食品藥品職業(yè)技術(shù)學(xué)院《污染與恢復(fù)生態(tài)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 糧食流通管理?xiàng)l例考核試題及答案
- 搞好班組安全建設(shè)
- 德語(yǔ)四級(jí)真題2023
- TPM培訓(xùn)講義的教案
- 農(nóng)村公路養(yǎng)護(hù)工程預(yù)算定額(征求意見(jiàn)稿)
- 2023年社?;鸢踩窘逃龑W(xué)習(xí)研討會(huì)發(fā)言稿報(bào)告(4篇)
- 院感知識(shí)考試試題及答案
- GB/T 28724-2012固體有機(jī)化學(xué)品熔點(diǎn)的測(cè)定差示掃描量熱法
- GB/T 23743-2009飼料中凝固酶陽(yáng)性葡萄球菌的微生物學(xué)檢驗(yàn)Baird-Parker瓊脂培養(yǎng)基計(jì)數(shù)法
- 第2章城市道路網(wǎng)規(guī)劃課件
評(píng)論
0/150
提交評(píng)論