




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
考點41數據的搜集與處理
一.選擇題(共16小題)
1.(2018?安順)要調查安順市中學生了解禁毒知識的情況,下列抽樣調查最適合的是()
A.在某中學抽取200名女生
B.在安順市中學生中抽取200名學生
C.在某中學抽取200名學生
D.在安順市中學生中抽取200名男生
【分析】直接利用抽樣調查中抽取的樣本是否具有代表性,進而分析得出答案.
【解答】解:A、在某中學抽取20()名女生,抽樣具有局限性,不合題意;
B、在安順市中學生中抽取200名學生,具有代表性,符合題意;
C、在某中學抽取200名學生,抽樣具有局限性,不合題意;
D、在安順市中學生中抽取200名男生,抽樣具有局限性,不合題意:
故選:B.
2.(2018?貴陽)在“生命安全”主題教育活動中,為了解甲、乙、丙、丁四所學校學生對
生命安全知識掌握情況,小麗制定了如下方案,你認為最合理的是()
A.抽取乙校初二年級學生進行調查
B.在丙校隨機抽取600名學生進行調查
C.隨機抽取150名老師進行調查
D.在四個學校各隨機抽取150名學生進行調查
【分析】根據抽樣調查的具體性和代表性解答即可.
【解答】解:為了解甲、乙、丙、丁四所學校學生對生命安全知識掌握情況,在四個學校各
隨機抽取150名學生進行調查最具有具體性和代表性,
故選:【).
3.(2018?重慶)為調查某大型企業員工對企業的滿意程度,以下樣本最具代表性的是()
A.企業男員工
B.企業年滿50歲及以上為員工
C.用企業人員名冊,隨機抽取三分之一的員工
I).企業新進員工
【分析】直接利用抽樣調查的可靠性,應隨機抽取.
【解答】解:為調查某大型企業員工對企業的滿意程度,以下樣本最具代表性的是:
用企業人員名冊,隨機抽取三分之一的員工.
故選:C.
4.(2018?重慶)下列調查中,最適合采用全面調查(普查)的是()
A.對我市中學生每周課外閱讀時間情況的調查
B.對我市市民知曉“禮讓行人”交通新規情況的調查
C.對我市中學生觀看電影《厲害了,我的國》情況的調查
D.對我國首艘國產航母C02型各零部件質量情況的調查
【分析】由普杳得到的調杳結果比較準確,但所費人力、物力和時間較多,而抽樣調杳得到
的調查結果比較近似.
【解答】解:A、對我市中學生每周課外閱讀時間情況的調查,人數眾多,意義不大,應采
用抽樣調查,故此選項錯誤;
B、對我市市民知曉“禮讓行人”交通新規情況的調查,人數眾多,意義不大,應采用抽樣
調查,故此選項錯誤;
C、對我市中學生觀看電影《厲害了,我的國》情況的調查,人數眾多,意義不大,應采用
抽樣調查,故此選項錯誤;
D、對我國首殷國產航母002型各零部件質量情況的調查,意義重大,應采用普查,故此選
項正確;
故選:D.
5.(2018?柳州)如圖是某年參加國際教育評估的15個國家學生的數學平均成績(x)的扇
形統計圖,由圖可知,學生的數學平均成績在60WXV70之間的國家占()
6.7%
13.3%
■40WxV50
口50WxV60
[60WxV70
□70WxVS0
A.6.7%B.13.3%C.26.7%I).53.3%
【分析】根據扇形統計圖直接反映部分占總體的百分比大小,可知學生成績在60WxV69
之間的占53.3%.
【解答】解:由圖可知,學生的數學平均成績在60?乂〈70之間的國家占53.3%.
故選:D.
6.(2018?嘉興)2018年1?4月我國新能源乘用車的月銷量情況如圖所示,則下列說法錯
誤的是()
201s年17月新能源乘用主
月銷量統計圖
A.1月份銷量為2.2萬輛
B.從2月到3月的月銷量增長最快
C.4月份銷量比3月份增加了1萬輛
D.1?4月新能源乘用車銷量逐月增加
【分析】根據題目中的折線統計圖,可以判斷各個選項中的結論是否正確,從而可以解答本
題.
【解答】解:由圖可得,
1月份銷量為2.2萬輛,故選項A正確,
從2月到3月的月俏量增長最快,故選項B正確,
4月份銷量比3月份增加了4.3-3.3=1萬輛,故選項C正確,
1?2月新能源乘用車銷量減少,2?4月新能源乘用車銷量逐月增加,故選項D錯誤,
故選:D.
7.(2018?邵陽)根據李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統計圖.
01—"2~3~4~5~6~7~8~610”射擊次數
根據圖所提供的信息,若要推薦一位成績較穩定的選手去參賽,應推薦()
A.李飛或劉亮B.李飛C.劉亮D.無法確定
【分析】根據折線統計圖得出兩人射擊成績,再計算出兩人成績的方差,據此即可作出判斷.
【解答】解:李飛的成績為5、8、9、7、8、9、10、8、9、7,
則李飛成績的平均數為5+7X2+8j;+9X3+10一g,
所以李飛成績的方差為表X[(5-8)2+2X(7-8)2+3X(8-8)2+3X(9-8)2+(10-8)
2]=1.8;
劉亮的成績為7、8、8、9、7、8、8、9、7、9,
則劉亮成績的平均數為7X3+.4+9X3g,
???劉亮成績的方差為需X[3X(7-8)2+4X(8-8)2-3X(9-8)1=0.6,
V0.6<1.8,
???應推薦劉亮,
故選:C.
8.(2018?江西)某班組織了針對全班同學關于“你最喜歡的?項體育活動”的問卷調查后,
下列結論正確的是()
A.最喜歡籃球的人數最多
B.最喜歡羽毛球的人數是最喜歡乒乓球人數的兩倍
C.全班共有50名學生
D.最喜歡田徑的人數占總人數的10%
【分析】根據頻數分布直方圖中的數據逐一判斷可得.
【解答】解:A、最喜歡足球的人數最多,此選項錯誤;
B、最喜歡羽毛球的人數是最喜歡田徑人數的兩倍,此選項錯誤;
C、全班學生總人數為12+20+8+4+6=50名,此選項正確;
D、最喜歡田徑的人數占總人數的3X100%=8筆,此選項錯誤
50
故選:C.
9.(2018?呼和浩特)隨著“三農”問題的解決,某農民近兩年的年收入發生了明顯變化,
已知前年和去的年收入分別是60000元和80000元,卜.面是依據①②③三種農作物每種作物
每年的收入占該年年收入的比例繪制的扇形統計圖.依據統計圖得出的以下四個結論正確的
A.①的收入去年和前年相同
B.③的收入所占比例前年的比去年的大
C.去年②的收入為2.8萬
D.前年年收入不止①②⑤三種農作物的收入
【分析】根據扇形統計圖中各項目的圓心角即可得出每部分占總體的百分比,據此對各選項
逐一判斷即可得.
117117
【解答】解:A、前年①的收入為60000X-^*19500,去年①的收入為80000X三*26000,
360360
此選項錯誤;
B、前年③的收入所占比例為"|產XI。。爐3。以去年③的收入所占比例為
36°一,[二126xIOO5=32.5%,此選項錯誤:
360
C、去年②的收入為8()00CX裝-28()()()二2.8(萬元),此選項正確;
360
D、前年年收入即為①②③三種農作物的收入,此選項錯誤;
故選:C.
10.(2018?湘潭)每年5月11日是由世界衛生組織確定的世界防治肥胖日,某校為了解全
校2000名學生的體重情況,隨機抽測了200名學生的體重,根據體質指數(BMI)標準,體
重超標的有15名學生,則估計全校體重超標學生的人數為()
A.15B.150C.200D.2000
【分析】用全校學生總人數乘以樣本中體重超標的人數所占比例即可得.
【解答】解:估計全校體重超標學生的人數為2000義尋:150人,
故選:B.
H.(2018?成都)如圖是成都市某周內最高氣溫的折線統計圖,關于這7天的日最高氣溫
的說法正確的是()
A.極差是8℃B.眾數是28℃C.中位數是24℃D.平均數是26℃
【分析】根據折線統計圖中的數據可以判斷各個選項中的數據是否正確,從而可以解答本題.
【解答】解:由圖可得,
極差是:30-20=10℃,故選項A錯誤,
眾數是28C,故選項B正確,
這組數按照從小到大排列是:20、22、24、26、28、28、30,故中位數是26℃,故選項C
錯誤,
平均數是:20+22+24+:+28+28+30=25半匕,故選項D錯誤,
故選:B.
12.(2018?臨安區)某校九(1)班的全體同學最喜歡的球類運動用如圖所示的統計圖來表
示,下面說法正確的是()
A.從圖中可以直接看出喜歡各種球類的具體人數
B.從圖中可以百接看出全班的點、人數
C.從圖中可以直接看出全班同學初中三年來喜歡各種球類的變化情況
D.從圖中可以直接看出全班同學現在最喜歡各種球類的人數的大小關系
【分析】利用扇形統計圖的特點,可以得到各類所占的比例,但總數不確定,不能確定每類
的具體人數.
【解答】解:因為扇形統計圖直接反映部分占總體的百分比大小,不能反映具體數量的多少
和變化情況,
所以A、B、C都錯誤,
故選:I).
13.(2018?廣西)某球員參加一場籃球比賽,比賽分4節進行,該球員每節得分如折線統
計圖所示,則該球員平均每節得分為()
A.7分B.8分C.9分D.10分
【分析】根據平均分的定義即可判斷:
【解答】解:該球員平均每節得分,今三瀘8,
4
故選:B.
14.(2018?云南)2017年12月8日,以“[數字工匠]玉汝于成,[數字工坊]溪達四海”
為主題的2017一帶一路數學科技文化節?玉溪暨第10屆全國三維數字化創新設計大賽(簡
稱“全國3D大賽”)總決賽在玉溪圓滿閉幕.某學校為了解學生對這次大賽的了解程度,
在全校1300名學生中隨機抽取部分學生進行了一次問卷調查,并根據收集到的信息進行了
統計,繪制了下面兩幅統計圖.下列四個選項錯誤的是()
1Q個人數(人)
io
16
14
12
10
8
64
2
0了瞬呈要
非常了解一段不了淳.
了解
A.抽取的學生人數為50人
B.“非常了解.”的人數占抽取的學生人數的12%
C.a=72°
D.全校“不了解”的人數估計有428人
【分析】利用圖中信息一一判斷即可解決問題;
【解答】解:抽取的總人數為6+10+16+18=50(人),故A正確,
“非常了解”的人數占抽取的學生人數的梟12%,故B正確,
50
a=360°x£=72°,故正確,
50
全校“不了解”的人數估計有1300X1|=468(人),故D錯誤,
故選:D.
15.(2018?內江)為了了解內江市2018年中考數學學科各分數段成績分布情況,從中抽取
400名考生的中考數學成績進行統計分析,在這個問題中,樣本是指()
A.400
B.被抽取的400名考生
C.被抽取的400名考生的中考數學成績
D.內江市2018年中考數學成績
【分析】直接利用樣本的定義,從總體中取出的一部分個體叫做這個總體的一個樣本,進而
分析得出答案.
【解答】解:為了了解內江市2018年中考數學學科各分數段成績分布情況,從中抽取400
名考生的中考數學成績進行統計分析,
在這個問題中,樣本是指被抽取的400名考生的中考數學成績.
故選:C.
16.(2018?郴州)甲、乙兩超市在1月至8月間的盈利情況統計圖如圖所示,下面結論不
A.甲超市的利潤逐月減少
B.乙超市的利潤在1月至4月間逐月增加
C.8月份兩家超市利潤相同
D.乙超市在9月份的利潤必超過甲超市
【分析】根據折線圖中各月的具體數據對四個選項逐一分析可得.
【解答】解:A、甲超市的利潤逐月減少,此選項正確;
B、乙超市的利潤在1月至4月間逐月增加,此選項正確;
C、8月份兩家超市利潤相同,此選項正確;
D、乙超市在9月份的利潤不一定超過甲超市,此選項錯誤;
故選:D.
二.填空題(共10小題)
17.(2018?貴陽)某班50名學生在2018年適應性考試中,數學成績在100?11()分這個分
數段的頻率為0.2,則該班在這個分數段的學生為10人.
【分析】頻率是指每個對象出現的次數與總次數的比值(或者百分比),即頻率二頻數?數
據總數,進而得出即可.
【解答】解:???頻數=總數X頻率,
???可得此分數段的人數為:50X0.2=10.
故答案為:10.
18.(2018?臨安區)為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然
后放回池塘里,經過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其
中有標記的魚有10條,則估計池塘里有魚20000條.
【分析】捕撈200條,其中有標記的魚有1()條,即在樣本中有標記的所占比例為招,而
在整體中有標記的共有1C00條,根據所占比例即可解答.
【解答】解:100()+尋-20()0()(條).
故答案為:20000.
19.(2018?常德)某校對初一全體學生進行了一次視力普查,得到如下統計表,則視力在
4.9WxV5.5這個范圍的頻率為().的.
視力X頻數
4.0WxV4.320
4.34V4.640
4.6<xV4.970
4.9WxW5.260
5.2WxV5.510
【分析】直接利用頻數?總數二頻率進而得出答案.
【解答】解:視力在4.9WxV5.5這個范圍的頻數為:60+10=70,
70
則視力在4.9WxV5.5這個范圍的頻率為:=0.35.
20+40+70+60+10
故答案為:0.35.
20.(2018?長沙)某校九年級準備開展春季研學活動,對全年級學生各自最想去的活動地
點進行了調查,把調查結果制成了如下扇形統計圖,則“世界之窗”對應扇形的圓心角為
90度.
【分析】根據圓心角=360'X百分比計算即可;
【解答】解:“世界之窗”對應扇形的圓心角=360°X(1-10%-30%-20%-15%)=90°,
故答案為90.
21.(2018?邵陽)某市對九年級學牛講行“綜合素質”評價,評價結果分為A,B,C,D,
E五個等級.現隨機抽取7500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統
計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據此估算該市800D0名
九年級學生中“綜合素質”評價結果為“A”的學生約為16000人.
【分析】用畢業生總人數乘以“綜合素質”等級為A的學生所占百分比即可求得結果.
【解答】解:該市800(H)名九年級學生中“綜合素質”評價結果為“A”的學生約為
2
80000X處“4yX100%=l6000,
故答案為:16000
22.(2018?上海)某校學生自主建立了一個學習用品義賣平臺,已知九年級200名學生義
賣所得金額的頻數分布直方圖如圖所示,那么20-30元這個小組的組頻率是0.25.
【分析】根據“頻率=頻數+總數”即可得.
【解答】解:20-30元這個小組的組頻率是50?200=0.25,
故答案為:0.25.
23.(2018?荷澤)據資料表明:中國已成為全球機器人第二大專利來源國和目標國.機器
人幾大關鍵技術領域包括:諧波減速器、RV減速器、電焊鉗、3D視覺控制、焊縫跟蹤、涂
裝軌跡規劃等,其中涂裝筑跡規劃的米源國結構(僅計算了中、H、德、美)如圖所不,在
該扇形統計圖中,美國所對應的扇形圓心角是一57.6度.
【分析】根據圓心角=360'X百分比,計算即可;
【解答】解:美國所對應的扇形圓心角=360°X(1-21%-32%-31%)=57.6°,
故答案為57.6.
24.(2018?重慶)春節期間,重慶某著名旅游景點成為熱門景點,大量游客慕名前往,市
旅游局統計了春節期間5天的游客數量,繪制了如圖所示的折線統計圖,則這五天游客數量
的中位數為23.4萬人
小人數萬人
【分析】由折線統計圖得出這五天游客數量從小到大排列為結果,再根據中位數的定義求解
可得.
【解答】解:將這5天的人數從小到大排列為21.9、22.4、23.4、24.9、25.4,
所以這五天游客數量的中位數為23.4萬人,
故答案為:23.4萬人.
25.(2018?重慶)某企業對一工人在五個工作日里生產零件的數量進行調查,并繪制了如
圖所示的折線統計圖,則在這五天里該工人每天生產零件的平均數是34個.
一二三四五
【分析】根據平均數的計算解答即可.
[解答]解:36+3嗎+34+35=34,
5
故答案為:34
26.(2018?青島)已知甲、乙兩組數據的折線圖如圖,設甲、乙兩組數據的方差分別為S
【分析】結合圖形,根據數據波動較大的方差較大即可求解.
【解答】解:從圖看出:乙組數據的波動較小,故乙的方差較小,即
故答案為:>.
三.解答題(共19小題)
27.(2018?金華)為了解朝陽社區20?60歲居民最喜歡的支付方式,某興趣小組對社區內
該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數據整理后
繪成如下兩幅不完整的統計圖.請根據圖中信息解答下列問題:
各種支付方式的扇形統計圖各種支付方式中不同年齡段人數條形統計圖
A支付寶支付
B微信支付
C現金支付
D其他
(1)求參與問卷調查的總人數.
(2)補全條形統計圖.
(3)該社區中20?60歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數.
【分析】(1)根據喜歡支付寶支付的人數?其所占各種支付方式的比例二參與問卷調查的總
人數,即可求出結論;
(2)根據喜歡現金支付的人數(41?60歲)=參與問卷調查的總人數X現金支付所占各種
支付方式的比例-15,即可求出喜歡現金支付的人數(41?60歲),再將條形統計圖補充
完整即可得出結論;
(3)根據喜歡微信支付方式的人數;社區居民人數X微信支付所占各種支付方式的比例,即
可求出結論.
【解答】解:(1)(120+80)+40%=500(人).
答:參與問卷調查的總人數為500人.
(2)500X15%-15=60(人).
補全條形統計圖,如圖所示.
(3)8000X(1-40%-10%-15%)=2800(人).
答:這些人中最喜歡微信支付方式的人數約為2800人.
各衿支付方式中不同年齡段人敦條形統計圖
28.(2018?宿遷)某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(6()
WmWlOO),組委會從1000篇征文中隨機抽取了部分參賽征文,統計了它們的成績,并繪
制了如下不完整的兩幅統計圖表.
征文比賽成績頻數分布表
分數段頻數頻率
60?m<70380.38
70WmV80a0.32
80<m<90bC
90WmW100100.1
合計1
請根據以上信息,解決下列問題:
(1)征文比賽成績頻數分布表中c的值是0.2;
(2)補全征文比賽成績頻數分布直方圖;
(3)若80分以上(含80分)的征文將被評為一等獎,式估計全市獲得一等獎征文的篇數.
征文比賽成共教分行亙方匿
【分析】(I)依據1-0.38-0.32-0.1,即可得到c的值;
(2)求得各分數段的頻數,即可補全征文比賽成績頻汰分布直方圖;
(3)利用80分以上(含川分)的征文所占的比例,即可得到全巾獲得一等獎征文的篇數.
【解答】解:(1)1-0.38-0.32-0.1=0.2,
故答案為:0.2;
(2)104-0.1=100,
100X0.32=32,100X0.2=20,
補全征文比賽成績頻數分布直方圖:
(3)全市獲得一等獎征文的篇數為:為00X(0.2+0.1)=300(篇).
29.(2018?遵義)為深化課程改革,某校為學生開設了形式多樣的社團課程,為了解部分
社團課程在學生中最受歡迎的程度,學校隨機抽取七年級部分學生進行調杳,從A:文學簽
賞,B:科學探究,C:文史天地,D:趣味數學四門課程中選出你喜歡的課程(被調查者限
選一項),并將調查結果繪制成兩個不完整的統計圖,如圖所示,根據以上信息,解答下列
問題:
(1)本次調查的總人數為160人,扇形統計圖中A部分的圓心角是54度.
(2)請補全條形統計圖.
(3)根據本次調查,該校七年級840名學生中,估計最喜歡“科學探究”的學生人數為多
少?
該項人數
【分析】(1)根據:該項所占的百分比二總人數X100%,圓心角=該項的百分比X360。.兩
圖給出了I)的數據,代入卻可算出調杳的總人數,然后再算出A的圓心角;
(2)根據條形圖中數據和調臺總人數,先計算出喜歡“科學探窕”的人數,再補全條形圖;
(3)根據:喜歡某項人數二總人數X該項所占的百分比,計算即得.
【解答】解:(1)由條形圖、扇形圖知:喜歡趣味數學的有48人,占調查總人數的30斬
所以調查總人數:48-r30V160(人)
圖中A部分的圓心角為:黑'X3600=54°
160
故答案為:160,54
(2)喜歡“科學探究”的人數:160-24-32-48
=56(人)
補全如圖所示
(3)840X^-294(名)
答:該校七年級840名學生中,估計最喜歡“科學探究”的學生人數為294名.
2,人數
30.(2018?湘潭)今年我市將創建全國森林城市,提出了“共建綠色城”的倡議.某校積
極響應,在3月12日植樹節這天組織全校學生開展了植樹活動,校團委對全校各班的植樹
情況道行了統計,繪制了如圖所示的兩個不完整的統計圖.
(1)求該校的班級總數;
(2)將條形統計圖補充完整;
(3)求該校各班在這?活動中植樹的平均數.
【分析】(1)根據統計圖中植樹12顆的班級數以及所占百分比25%列出算式,即可求出答
案;
(2)根據條形統計圖求出植樹11顆的班級數是4,畫出即可;
(3)根據題意列出算式,即可求出答案.
【解答】解:(1)該校的班級總數=3?25%=12,
答:該校的班級總數是12;
(2)植樹11顆的班級數:12?1-2?3?4=2,如圖所示:
(3)(1X8+2X9+2X11+3X12+4X15)-4-12=12(顆),
答:該校各班在這一活動中植樹的平均數約是12顆數.
31.(2018?武漢)某校七年級共有500名學生,在“世界讀書日”前夕,開展了“閱讀助
我成長”的讀書活動.為了解該年級學生在此次活動中課外閱讀情況,從中隨機抽取m名學
生,調查他們課外閱讀書籍的數最,將收集的數據整理成如下統計表和扇形圖.
學生讀書數量統計表
閱讀量/學生人數
本
115
2a
3b
45
(1)直接寫出m、a、b的值;
(2)估計該年級全體學生在這次活動中課外閱讀書籍的總量大約是多少本?
學生讀書數量扇形圖
【分析】(1)根據題意和統計圖中的數據可以求得m、a、b的值:
(2)根據統計圖中的數據可以求得該年級全體學生在這次活動中課外閱讀書籍的總量大約
是多少本.
【解答】解:(1)由題意可得,
m=154-30%=50,b=50X40%=20,a=50-15-20-5=10,
即m的值是50,a的值是10,b的值是20:
(2)(1X15+2X10+3X20+4X5)X皿21150(本),
50
答:該年級全體學生在這次活動中課外閱讀書籍的總量大約是1150本.
32.(2018?揚州)江蘇省第十九屆運動會將于2018年9月在揚州舉行開幕式,某校為了了
解學生“最喜愛的省運動會項目”的情況,隨機抽取了部分學生進行問卷調查,規定每人從
“籃球”、“羽毛球”、“自行車”、“游泳”和“其他”五個選項中必須選擇且只能選擇
一個,并將調查結果繪制成如下兩幅不完整的統計圖表.
最喜愛的省運會項目的人數調查統計表
最喜愛的項目人數
籃球20
羽毛球9
自行車10
游泳a
其他b
合計
根據以上信息,請回答下列問題:
(1)這次調查的樣本容量是a+b11
(2)扇形統計圖中“自行車”對應的扇形的圓心角為72°.
(3)若該校有1200名學生,估計該校最喜愛的省運會項目是籃球的學生人數.
最喜愛的省運會項§的人數分布扁形年計窿
【分析】(1)依據9+1股,即可得到樣本容量,進而得到a+b的值;
(2)利用圓心角計算公式,即可得到“自行車”對應的扇形的圓心角;
(3)依據最喜愛的省運會項目是籃球的學生所占的比例,即可估計該校最喜愛的省運會項
目是籃球的學生人數.
【解答】解:(1)樣本容量是9彳18%=50,
a+b=50-20-9-10=11,
故答案為:50,11:
(2)“自行車”對應的扇形的圓心角二段X360。=72°,
50
故答案為:72。;
(3)該校最喜愛的省運會項目是籃球的學生人數為:1200X要480(人).
33.(2018?杭州)某校積極參與垃圾分類活動,以班級為單位收集可回收垃圾,下面是七
年級各班一周收集的可回收垃圾的質量的頻數表和頻數直方圖(每組含前一個邊界值,不含
后一個邊界值).
某校七年級各班一周收集的可回收垃圾的質量的頻數表
組別(kg)頻數
4.0?4.52
4.5?5.0a
5.0?5.53
5.5?6.01
(1)求a的值
(2)已知收集的可回收垃圾以0.8元/kg被回收,該年級這周收集的可回收垃圾被回收后
所得金額能否達到50元?
某校七年級各班一周收雋的可回收
垃圾的質量的頻數直方圖
【分析】(1)由頻數分布直方圖可得4.5?5.0的頻數a的值;
(2)先求出該年級這周收集的可回收垃圾的質量的最大值,再乘以單價即可得出答案.
【解答】解:(1)由頻數分布宜方圖可知4.5?5.0的須數a=4;
(2)???該年級這周收集的可回收垃圾的質量小于4.5X2+5X4+5.5X3+6=51.5(kg)
,該年級這周收集的可回收垃圾被回收后所得金額小于51.5X0.8=41.2元,
,該年級這周收集的可回收垃圾被回收后所得金額不能達到50元.
34.(2018?株洲)為提高公民法律意識,大力推進國家工作人員學法用法工作,今年年初
某區組織本區900名教師參加“如法網”的法律知識考試,該區A學校參考教師的考試成績
繪制成如下統計圖和統計表(滿分100分,考試分數均為整數,其中最低分76分)
分數人數
85.5以下10
85.5以上35
96.5以上8
(1)求A學校參加本次考試的教師人數;
(2)若該區各學校的基本情況一致,試估計該區參考教師本次考試成績在90.5分以下的人
數;
(3)求A學校參考教師本次考試成績85.5?96.5分之間的人數占該校參考人數的百分比.
【分析】(1)利用表格中數據分布即可得出A學校參加本次考試的教師人數;
(2)利用A學校參加本次考試的教師人數與成績在90.5分以下的人數,即可估計該區參考
教師本次考試成績在90.5分以下的人數;
(3)利用表格中數據可得A學校參考教師本次考試成績85.5?96.5分之間的人數占該校參
考人數的白分比.
【解答】解:(1)由表格中數據可得:85.5以下10人,85.5以上35人,
則A學校參加本次考試的教師人數為45人;
(2)由表格中85.5以下10人,85.5-90.5之間有:15人;
故計該區參考教師本次考試成績在90.5分以下的人數為:當售X900500(人);
45
(3)由表格中96.5以上8人,95.5-100.5之間有:9人,
則96分的有1人,可得90.5-95.5之間有:35-15-9=11(人),
則A學校參考教師本次考試成績85.5?96.5分之間的人數占該校參考人數的百分比為:
15+1+11x100%=60%
45
35.(2018?天津)某養雞場有2500只雞準備對外出化:,從中隨機抽取了一部分雞,根據它
們的質品(單位:kg),繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:
(I)圖①中m的值為28;
(ID求統計的這組數據的平均數、眾數和中位數;
(IH)根據樣本數據,估計這2500只雞中,質量為2.0kg的約有多少只?
【分析】⑴根據各種質量的百分比之和為1可得m的值;
(II)根據眾數、中位數、加權平均數的定義計算即可;
(III)將樣本中質量為2.0kg數曷所占比例乘以總數備2500即可.
【解答】解:(I)圖①中m的值為100-(32+8+10+22)=28,
故答案為:28;
(II)這組數據的平均數為!:然刎?2歿1生鴛,吃:注16+2.j52(kg),
5+11+14+16+4
眾數為1.8kg,中位數為1?'LSy5kg;
d
(III)估計這2500只雞中,質量為2.0kg的約有2500X;L200只.
50
36.(2018?哈爾濱)為使中華傳統文化教育更具有實效性,軍寧中學開展以“我最喜愛的
傳統文化種類”為主題的調查活動,圍繞“在詩詞、國畫、對聯、書法、戲曲五種傳統文化
中,你最喜愛哪一種?(必選且只選一種)”的問題,在全校范圍內隨機抽取部分學生進行
問卷調杳,將調查結果整理后繪制成如圖所示的不完整的統計圖,請你根據圖中提供的信息
回答下列問題:
(1)本次調查共抽取了多少名學生?
(2)通過計算補全條形統計圖;
(3)若軍寧中學共有960名學生,請你估計該中學最喜愛國畫的學生有多少名?
【分析】(1)由“詩詞”的人數及其所占百分比可得總人數;
(2)總人數減去其他種類的人數求得“書法”的人數即可補全條形圖;
(3)用總人數乘以樣本中“國畫”人數所占比例.
【解答】解:(1)本次調杳的學牛總人數為24?20%=120人:
(3)估計該中學最喜愛國畫的學生有960X瑞-320人.
JL乙U
37.(2018?婁底)為了取得扶貧工作的勝利,某市對扶貧工作人員進行了扶貧知識的培訓
與測試,隨機抽取了部分人員的測試成績作為樣本,并洛成績劃分為A、B、C、D四個不同
的等級,繪制成不完整統計圖如圖,請根據圖中的信息,解答下列問題:
n%\、
C
B
30%
(1)求樣本容量;
(2)補全條形圖,并填空:n=10
(3)若全市有5000人參加了本次測試,估計本次測試成績為A級的人數為多少?
【分析】(1)用B等級人數除以其所占百分比可得;
(2)總人數減去A、B、D人數求得C的人數即可補全條形圖,用D等級人數除以總人數可
得n的值;
(3)總人數乘以樣本中A等級人數所占比例即可得.
【解答】解:(1)樣本容量為184-30%=60:
(2)C等級人數為60?124+18+6)=12人,唯二旦X100與二10樂
60
補全圖形如下:
故答案為:10;
(3)估計本次測試成績為A級的人數為5000X^-2000人.
60
38.(2018?白銀)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年
級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,
按A,B,C,I)四個等級進行統計,制成了如下不完整的統計圖.(說明:A級:8分-10
分,B級:7分-7.9分,C級:6分-6.9分,D級:1分-5.9分)
根據所給信息,解答以下問題:
(1)在扇形統計圖中,C對應的扇形的圓心角是」度;
(2)補全條形統計圖;
(3)所抽取學生的足球運球測試成績的中位數會落在等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
計圖扇做計圖
【分析】(1)先根據B等級人數及其白分比求得總人數,總人數減去其他等級人數求得C
等級人數,繼而用360°乘以C等級人數所占比例即可得;
(2)根據以上所求結果即可補全圖形;
(3)根據中位數的定義求解可得;
(4)總人數乘以樣本中A等級人數所占比例可得.
【解答】解:(I)???總人數為18+45院40人,
???C等級人數為40?(4+18+5)=13人,
則C對應的扇形的圓心角是360。x/117。,
40
故答案為:117;
(2)補全條形圖如下:
扇形統計圖
<3)因為共有40個數據,具中位數是第20、21個數據的平均數,而第20、21個數據均落
在B等級,
所以所抽取學牛.的足球運球測試成績的中位數會落在B等級,
故答案為:B.
(4)估計足球運球測試成績達到A級的學生有300X去3()人.
39.(2018?寧波)在第23個世界讀書口前夕,我市某中學為了解本校學生的每周課外閱讀
時間(用t表示,單位:個時),采用隨機抽樣的方法進行問卷調查,調查結果按0WtV2,
2<t<3,3WtV4,t24分為四個等級,并依次用A,E,C,I)表示,根據調查結果統計的
數據,繪制成了如圖所示的兩幅不完整的統計圖,由圖中給出的信息解答下列問題:
各等級人數的扇形統計圖各等級人數的條計圖
A學生人數(人)
(1)求本次調查的學生人數:
(2)求扇形統計圖中等級B所在扇形的圓心角度數,并把條形統計圖補充完整;
(3)若該校共有學生12co人,試估計每周課外閱讀時間滿足3WtV4的人數.
【分析】(1)由條形圖、塌形圖中給出的級別A的數字,可計算出調查學生人數;
(2)先計算出C在扇形圖中的百分比,用1?[(A+D+C)在扇形圖中的百分比]可計算出B
在扇形圖中的百分比,再計算出B在扇形的圓心角.
<3)總人數X課外閱讀時間滿足3WLV4的百分比即得所求.
【解答】解:(1)由條形圖知,A級的人數為20人,
由扇形圖知:A級人數占總調查人數的10%
所以:20?10%=20X嬰-200(人)
即本次調查的學生人數為200人;
(2)由條形圖知:C級的人數為60人
所以C級所占的百分比為:100V30%,
B級所占的百分比為:1-10%-30%-45%=15%,
B級的人數為200X15%=30(人)
D級的人數為:200X45即90(人)
B所在扇形的圓心角為:360°X15%=54°.
(3)囚為C級所占的百分比為30與,
所以全校每周課外閱讀時訶滿足3<tV4的人數為:1200X30%=360(人)
答:全校每周課外閱讀時旬滿足3<t<4的約有360人.
各等級人數的扇形統計圖各等級人數的條形統計圖
A學生人數(人)
40.(2018?無錫)某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手
轎車的全部數據,以二手濟車交易前的使用時間為標準分為A、B、C、D、E五類,并根據這
些數據由甲,乙兩人分別繪制了下面的兩幅統計圖(圖都不完整).
各類二手轎車交易輛數的條形統計圖各類二手轎車交易會的扇形統計圖
(1)該汽車交易市場去年共交易二手轎車3000輛.
(2)把這幅條形統計圖補充完整.(畫圖后請標注相應的數據)
(3)在扇形統計圖中,D類二手轎車交易輛數所對應扇形的圓心角為54度.
【分析】(1)根據B類另J車輛的數量及其所占百分比可得總數量;
(2)用總數量乘以C類別的百分比求得其數量,據此即可補全條形圖;
(3)JIJ3600乘以D類車輛占總數量的比例即可得出答案.
【解答】解:(1)該汽車交易市場去年共交易二手轎車1080?36臟3000輛,
故答案為:3000;
(2)C類別車輛人數為3000X25%=750輛,
補全條形統計圖如下:
各類二手轎車交易后數的條形統計圖各類二手轎車交易輛數的扇除計圖
(3)在扇形統計圖中,【)類二手轎車交易輛數所對應扇形的圓心角為360。X熱二,
故答案為:54.
41.(2018?泰州)某軟件科技公司20人負責研發與維護游戲、網購、視頻和送餐共4款軟
件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發與維
護人數的扇形統計圖和利潤的條形統計圖.
4款軟件冊發與維護人數的4款軟件利潤的條形統計圖
扇形統計圖
網購
根據以上信息,網答下列問題
(1)直接寫出圖中a,m的值;
(2)分別求網購與視頻軟件的人均利潤;
(3)在總人數和各款軟件人均利潤都保持不變的情況下,能否只調整網購與視頻軟件的研
發與維護人數,使總利潤增加60萬元?如果能,寫出調整方案;如果不能,請說明理由.
【分析】(1)根據各類別百分比之和為1可得a的值,由游戲的利潤及其所占百分比可得
總利潤;
(2)用網購與視頻軟件的利潤除以其對應人數即可得;
(3)設調整后網購的人數為X、視頻的人數為(10-x)人,根據“調整后四個類別的利潤
相加:原總利潤+60”列出方程,解之即可作出判斷.
【解答】解:(1)a=100-(10+40+30)=20,
;軟件總利潤為1200+4C爐3000,
/.m=3000-(1200+560+280)=960:
(2)網購軟件的人均利澗為萬駕左廣16()元/人,
20X30%
視頻軟件的人均利潤?力呻Z/T40元/人;
20X20%
(3)設調整后網購的人數為X、視頻的人數為(10-x)人,
根據題意,得:1200+280+160x+140(10-x)=3000+60,
解得:x=9,
即安排9人負責網購、安排1人負責視頻可以使總利潤增加60萬元.
42.(2018?邵陽)某校為選拔一名選手參加“美麗邵陽,我為家鄉做代言”主題演講比賽,
經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整).下
表是李明、張華在選拔賽中的得分情況:
項目服裝普通話主題演講技巧
選手
李明85708085
張華90757580
結合以上信息,回答下列問題:
(1)求服裝項目的權數及普通話項目對應扇形的圓心隹大小;
(2)求李明在選拔賽中四個項目所得分數的眾數和中位數:
(3)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家
鄉做代言”主題演講比賽,并說明理由.
【分析】(1)根據統計圖的數據可以求得服裝項目的權數及普通話項目對應扇形的圓心角
大小;
(2)根據統計表中的數據可以求得李明在選拔賽中四個項FI所得分數的眾數和中位數;
(3)根據統計圖和統計表中的數據可以分別計算出李明和張華的成績,然后比較大小,即
可解答本題.
【解答】解:(1)服裝項目的權數是:1-20%-30%-40%=10%,
普通話項目對應扇形的圓心角是:360。X20%=72°;
(2)明在選拔賽中四個項目所得分數的眾數是85,中位數是:(80+85)4-2=82.5;
(3)李明得分為:85X10%+70X20%+80X30%+85X40%=80.5,
張華得分為:90X10%+75X20%+75X30%+80X40%=78.5,
V80.5>78.5,
...李明的演講成績好,
故選擇李明參加“美麗邵陽,我為家鄉做代言”主題演講比賽.
43.(2018?通遼)為了解某校九年級學生立定跳遠水平,隨機抽取該年級5()名學生進行測
試,并把測試成績(單位:m)繪制成不完整的頻數分禰表和頻數分布直方圖.
學生立定跳遠測試成績的頻數分布表
分組頻數
1.24xV1.6a
1.6<x<2.012
2.0WxV2.4b
2.4Wx<2.810
請根據圖表中所提供的信息,完成下列問題:
(1)表中a=8,b=20,樣本成績的中位數落在2.UWXV2.4范圍內:
(2)請把頻數分布直方圖補充完整;
(3)該校九年級共有1000名學生.,估計該年級學生立定跳遠成績在2.4WxV2.8范圍內的
學生有多少人?
學生立定跳遠測試成綾的頻數分布直方圖
【分析】(1)根據題意和統計圖可以求得a、b的值,并得到樣本成績的中位數所在的取值
范圍;
(2)根據b的值可以將頻數分布直方圖補充完整;
(3)根據統計圖中的數據可以求得該年級學生立定跳遠成績在2.4WxV2.8范圍內的學生
有多少人.
【解答】解:(1)由統計圖可得,
a=8,b=50-8-12-10=20,
樣本成績的中位數落在:2.0WXV2.4范圍內,
故答案為:8,20,2.00V2.4;
(2)由(1)知,b=20,
補全的頻數分布直方圖如右圖所示;
(3)1000X—200(人),
50
答:該年級學生立定跳遠成績在2.4WxV2.8范圍內的學生有200人.
44.(2018?黑龍江)為響應黨的“文化自信”號召,某校開展了古詩詞誦讀大賽活動,現
隨機抽取部分同學的成績進行統計,并繪制成如下的兩個不完整的統計圖,請結合圖中提供
的信息,解答下列各題:
(1)直接寫出a的值,a=30,并把頻數分布直方圖補充完整.
(2)求扇形B的圓心角度數.
(3)如果全校有200()名學生參加這次活動,9()分以上(含90分)為優秀,那么估計獲得
優秀獎的學生有多少人?
頻數人A
AD
15-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球及中國電信訂單管理行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025-2030全球及中國汽車全球定位系統天線行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025-2030全球及中國模擬助理行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025-2030全球及中國智能灌溉系統行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025-2030全球及中國數字定時器開關行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025-2030全球及中國妊娠試紙行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025年鄉村醫生農村慢性病管理慢性病管理慢性病管理政策法規試題庫
- 2025-2030全球及中國全景IP攝像頭行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 接口安全標準制定-全面剖析
- 2025-2030保險柜市場發展分析及行業投資戰略研究報告
- 體育康養與心理健康促進的結合研究論文
- 天津市河東區2024-2025學年九年級下學期結課考試化學試題(含答案)
- 2025技術服務合同模板
- 2025年保安證學習資源題及答案
- 公司事故隱患內部報告獎勵制度
- 如何通過合理膳食安排促進嬰幼兒成長發育
- 人教版(2024)七年級下冊生物期中復習必背知識點提綱
- 浙江省紹興市2025屆高三語文一模試卷(含答案)
- 2025屆高三化學一輪復習 化學工藝流程題說題 課件
- 網線采購合同
- 2024年初級中式烹調師技能鑒定理論考前通關必練題庫(含答案)
評論
0/150
提交評論