




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆高三“一起考”大聯(lián)考(模擬二)(時(shí)量:120分鐘滿分:150分)命題人:毛水一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合A={x|x2-2x-3≤0},B={xeN|2-x≥0},則A∩B=()A.{1}B.{0,1}c.{0,1,2}D.{12.以y=±2x為漸近線的雙曲線可以是()BA.1B.√3C.-√4.若tana=2tanβ,,則sin(a-β)=()AA人的名次排列的情形有()6.已知a∈R,函數(shù).在R上沒(méi)有零點(diǎn),則實(shí)數(shù)a的取值范圍是()c.(1,+o)u{0}D.(1,+0)u{0}7.已知某正三棱柱外接球的表面積為4π,則該正三棱柱體積的最大值為()二、多選題:本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分.平面ABC垂直的是()三、填空題:本題共3小題,每小題5分,共15分.四、解答題:本題共5小題,共77分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.態(tài)度不喜歡喝茶喜歡喝茶35歲以上(含35歲)35歲以下a(2)設(shè)AB=1,且D是邊BC的中點(diǎn),求當(dāng)∠CAD最大時(shí),△ABC的面積.17.(15分)在三棱錐P-ABC中,平面PAB⊥平面ABC,PA⊥平面PBC.(1)求證:PBIBC;(2)若二面角P-AC-B的余弦值為,且AB=2,BC=√2,求PA.18.(17分)(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間與極值;(2)若f(x)≥0恒成立,求a的值;(3)求證:19.(17分)已知點(diǎn)F?(-1,0),F?(1,0),動(dòng)點(diǎn)T滿足|TF?|+|TF?(1)求C的方程;(2)直線l:x=4與x軸交于點(diǎn)M,B為1上的動(dòng)點(diǎn),過(guò)B作C的兩條切線,分別交V軸于點(diǎn)P,Q.②ON經(jīng)過(guò)B,P,Q三點(diǎn),是否存在點(diǎn)B,使得∠PNQ=90°?若存在,求BM|;若不存在,請(qǐng)說(shuō)明理由.2025屆高三“一起考”大聯(lián)考(模擬二)·數(shù)學(xué)1.C解析:由題意可得A={x|-I≤x≤3},B={3.D解析:(a+5)·(a-b)=a2-b2=laP-bP=[(-√3)2+(-12,故選B.6.B解析:當(dāng)x≤0時(shí),0<e*≤1,若e*=-a無(wú)解,則a≥0或a<-1;綜上,實(shí)數(shù)a的取值范圍是(-0,-1)u{0}.故選B.令,則f'(x)=4x3-2x3=-2x'(x-√2)等號(hào).a?6=1,a?7=2,a?8=3,a?9=4對(duì)于A,若z?=Zz?,則z?=c-di,故Z?Z?=c2+d2∈R,故A正確;2|=a2-b2+2abil=√(a2-b2)2+4a2b2=√(a2+b2)同理23|=lz?2,所以z?2=|z?對(duì)于A,取CA的中點(diǎn)為0,連接EO,BO,由中位線的性質(zhì)可知:EO//BD,EO=BD,所以四邊形BDEO為平行四邊形,所以DE//BO,又BOc平面ABC,DEc平面ABC,所以DE//平面ABC,故A正確;對(duì)于B,設(shè)AB,DE的交點(diǎn)為0,連接CO,由正四棱錐的結(jié)構(gòu)特征可知:又EDIAB,CO,AB為平面ABC內(nèi)兩條相交直線,所以直線DE⊥平面ABC,故B錯(cuò)誤;對(duì)于C,設(shè)棱長(zhǎng)為2,DE=DA+AE,所以DE·AC=(DA+AE)·AC=DA·AC+AE·AC=1×2×cos120°+2×2所以AC與DE不垂直,所以直線DE不與平面ABC垂直,故C正確;ED·AC=(EF+FD)·(AF+FC)=EF·AF+FD·AF+EF.y=txió/-gux)令,整理得e2x-2e*-1>0,又因?yàn)閤?+x?=0,所以x?+x?+x?>In(1+√2),故D正確.12.3√2解析:由3"=6=c可知c>0,a=log?c,b=log?c,,又f(x?)=0,f(x?)=√3,故答案為1.由消去V并化簡(jiǎn)整理得3x2-20x+12=0,易得△>0,,則則所以X的分布列為X012P16.解析:(1)由二倍角公式得.所以所以(2)由(1)及題設(shè),有AC=BC=2CD,的最大值為此時(shí),當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故AD2+CD2=AC2,可得△ACD為直角三角形且.又由(1)可得△ABC為正三角形,因?yàn)槠矫鍼AB⊥平面ABC,平面PAB∩平面ABC=AB,PEc平面PAB,PEIAB,所以BC⊥平面PAB,又PBc平面PAB,所以PB⊥BC.(2)法1:過(guò)E作EFIAC于F,連接PF.所以∠PFE即為二面角P-AC-B的平面角,所以,tan∠PFE=2√2.又由(1)可得PAIPB,BCIAB,設(shè)∠PAB=θ,所以PA=2cosθ,PE=2cosθsinθ,AE=2cos2θ,所以法2:由(1)可得PAIPB,BCIAB.如圖,以B為原點(diǎn),BA,BC所在則A(2,0,0),c(0,√2,0),P(2-2cos20,0,2cosOsine),所以AC=(-2,√2,0),AP=(-2cos2e,0,2cosSsine).設(shè)平面ACP的法向量為則即在x=0處取得極小值0,無(wú)極大值.(2)由題意得g(a)max=g(1)=0,所以Ina-(a-1)≤0.又Ina-(a-1)≥0,所以Ina-(a-1)=0,所以a=1.(3)證明:先證sinx<x(x>0),設(shè)h(x)=sinx-x(x>0),則h'(x)=cosx-1≤0,令,則1由△=64k2(t-4k)2-4(3+4k2)[4(t-4k)2-12]=0,得12k2-8tk+t2-3=0因?yàn)?所以BP,BF?,BQ的斜率成等差數(shù)列.②法1:在y-t=k?(x-4)中,令x=0,得yp=t-4k,所以P(0,t-4k?),所以NP=(-2k,k?-2,2k?-2k?),NQ=(-2k?k?-2,2k?-2k?),法2:在y-t=k?(x-4)中,令x=0,得yp=t-4k,因此P(0,t-4k?),在y-t=k?(x-4)中,令x=0,得yp=t-4k?,故P(0,t-4k?),同理可得Q(0,t-4k?), 所以,整理得t?+2t2-63=0,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 808-2019地下空間安全使用檢查規(guī)范
- DB31/T 1385-2022科技成果分類(lèi)評(píng)價(jià)和價(jià)值潛力評(píng)價(jià)規(guī)范
- DB31/T 1380-2022社會(huì)消防技術(shù)服務(wù)機(jī)構(gòu)質(zhì)量管理要求
- DB31/T 1292-2021歷史風(fēng)貌區(qū)保護(hù)性征收基地保護(hù)管理指南
- DB31/ 834-2014中空玻璃單位產(chǎn)品能源消耗限額
- DB31/ 267-2015燃料含硫量和灰分限值
- 2025裝修項(xiàng)目經(jīng)理合同示范文本
- 2024年健康運(yùn)動(dòng)信息測(cè)量產(chǎn)品資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 水土保持項(xiàng)目環(huán)境保護(hù)與可持續(xù)發(fā)展合同
- 繼承房產(chǎn)質(zhì)量問(wèn)題處理與質(zhì)量保障協(xié)議
- 品質(zhì)管控培訓(xùn)質(zhì)量管理與質(zhì)量控制課件
- 民間非營(yíng)利組織審計(jì)報(bào)告(模板)
- 漿砌石擋墻 護(hù)坡施工方案
- 上海市上海民辦蘭生中學(xué)2024-2025學(xué)年八年級(jí)上學(xué)期9月第一次月考數(shù)學(xué)試題(無(wú)答案)
- 2024年10月自考試02899生理學(xué)部分真題含解析
- DB13-T 5834-2023 化工建設(shè)項(xiàng)目安裝工程質(zhì)量技術(shù)資料管理規(guī)范
- DL∕ T 969-2005 變電站運(yùn)行導(dǎo)則
- 六年級(jí)道德與法治畢業(yè)考試時(shí)政知識(shí)點(diǎn)(一)
- 診斷學(xué)之全身體格檢查
- 小區(qū)水系清淤合同范本
- 省教育科學(xué)規(guī)劃課題設(shè)計(jì)論證:師范院校弘揚(yáng)教育家精神的實(shí)踐研究
評(píng)論
0/150
提交評(píng)論