陜西延安市實驗中學2024-2025學年高三1月聯考數學試題含解析_第1頁
陜西延安市實驗中學2024-2025學年高三1月聯考數學試題含解析_第2頁
陜西延安市實驗中學2024-2025學年高三1月聯考數學試題含解析_第3頁
陜西延安市實驗中學2024-2025學年高三1月聯考數學試題含解析_第4頁
陜西延安市實驗中學2024-2025學年高三1月聯考數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西延安市實驗中學2024-2025學年高三1月聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.2.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元3.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40404.幻方最早起源于我國,由正整數1,2,3,……,這個數填入方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形數陣就叫階幻方.定義為階幻方對角線上所有數的和,如,則()A.55 B.500 C.505 D.50505.已知定義在上的可導函數滿足,若是奇函數,則不等式的解集是()A. B. C. D.6.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.7.在中,為中點,且,若,則()A. B. C. D.8.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.9.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.2910.已知函數,若,則a的取值范圍為()A. B. C. D.11.設是虛數單位,則()A. B. C. D.12.已知函數(其中,,)的圖象關于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數圖象的一條對稱軸;②點是函數的一個對稱中心;③函數與的圖象的所有交點的橫坐標之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知為實數,向量,,且,則____________.14.在中,內角A,B,C的對邊分別是a,b,c,且,,,則_______.15.執行以下語句后,打印紙上打印出的結果應是:_____.16.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)十八大以來,黨中央提出要在2020年實現全面脫貧,為了實現這一目標,國家對“新農合”(新型農村合作醫療)推出了新政,各級財政提高了對“新農合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農合門診報銷比例醫院類別村衛生室鎮衛生院二甲醫院三甲醫院門診報銷比例60%40%30%20%根據以往的數據統計,李村一個結算年度門診就診人次情況如下:表2:李村一個結算年度門診就診情況統計表醫院類別村衛生室鎮衛生院二甲醫院三甲醫院一個結算年度內各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結算年度每人次到村衛生室、鎮衛生院、二甲醫院、三甲醫院門診平均費用分別為50元、100元、200元、500元.若李村一個結算年度內去門診就診人次為2000人次.(Ⅰ)李村在這個結算年度內去三甲醫院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結算年度內門診就診人次占全村總就診人次的比例視為概率,求李村這個結算年度每人次用于門診實付費用(報銷后個人應承擔部分)的分布列與期望.18.(12分)設函數.(1)求的值;(2)若,求函數的單調遞減區間.19.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.20.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.22.(10分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變為點(1,1).求實數a,k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.2.D【解析】

用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.3.D【解析】

計算,代入等式,根據化簡得到答案.【詳解】,,,故,,故.故選:.本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.4.C【解析】

因為幻方的每行、每列、每條對角線上的數的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數的和相等,所以階幻方對角線上數的和就等于每行(或每列)的數的和,又階幻方有行(或列),因此,,于是.故選:C本題考查了數陣問題,考查了學生邏輯推理,數學運算的能力,屬于中檔題.5.A【解析】

構造函數,根據已知條件判斷出的單調性.根據是奇函數,求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數,依題意可知,所以在上遞增.由于是奇函數,所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A本小題主要考查構造函數法解不等式,考查利用導數研究函數的單調性,考查化歸與轉化的數學思想方法,屬于中檔題.6.A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A本題考查折線圖與柱形圖,屬于基礎題.7.B【解析】

選取向量,為基底,由向量線性運算,求出,即可求得結果.【詳解】,,,,,.故選:B.本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.8.D【解析】

利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.9.D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.10.C【解析】

求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數,是增函數,是增函數,∴是增函數,∴由得,解得.故選:C.本題考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解.11.A【解析】

利用復數的乘法運算可求得結果.【詳解】由復數的乘法法則得.故選:A.本題考查復數的乘法運算,考查計算能力,屬于基礎題.12.C【解析】分析:根據最低點,判斷A=3,根據對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當時,,所以與有6個交點,設各個交點坐標依次為,則,所以③正確所以選C點睛:本題考查了根據條件求三角函數的解析式,通過求得的解析式進一步研究函數的性質,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.5【解析】

由,,且,得,解得,則,則.14.9【解析】

已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.本題考查正余弦定理在解三角形中的應用,難度一般.15.1【解析】

根據程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續循環ix循環前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環,所以打印紙上打印出的結果應是:1故答案為:1.本題考查了程序框圖,意在考查學生的計算能力和理解能力.16.【解析】

根據題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結論.【詳解】由,,設的中點為,根據題意,可得,且,解得,,,故.故答案為:.本題考查相交弦的性質,解題的關鍵在于利用相交弦的性質,即兩圓的連心線垂直平分相交弦,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)的發分布列為:X2060140400P0.70.10.150.05期望.【解析】

(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數,即可知道去三甲醫院的總人數,又有60歲所占的百分比可得60歲以上的人數,進而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結算的平均費用及表1所報的百分比可得隨機變量的可能取值,再由概率可得的分布列,進而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結算年度內去門診就診人次為2000人次,分別去村衛生室、鎮衛生院、二甲醫院、三甲醫院人數為,,,,而三甲醫院門診就診的人次中,60歲以上的人次占了,所以去三甲醫院門診就診的人次中,60歲以上的人數為:人,設從去三甲醫院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機變量的可能取值為:,,,,,,,,所以的發分布列為:X2060140400P0.70.10.150.05所以可得期望.本題主要考查互斥事件、隨機事件的概率計算公式、分布列及其數學期望、組合計算公式,考查了推理能力與計算能力,屬于中檔題.18.(1)(2)的遞減區間為和【解析】

(1)化簡函數,代入,計算即可;(2)先利用正弦函數的圖象與性質求出函數的單調遞減區間,再結合即可求出.【詳解】(1),從而.(2)令.解得.即函數的所有減區間為,考慮到,取,可得,,故的遞減區間為和.本題主要考查了三角函數的恒等變形,正弦函數的圖象與性質,屬于中檔題.19.(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.20.(1)證明見詳解;(2)【解析】

(1)取中點,根據,利用線面垂直的判定定理,可得平面,最后可得結果.(2)利用建系,假設長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論