安徽省石臺縣2024屆中考數學最后一模試卷含解析_第1頁
安徽省石臺縣2024屆中考數學最后一模試卷含解析_第2頁
安徽省石臺縣2024屆中考數學最后一模試卷含解析_第3頁
安徽省石臺縣2024屆中考數學最后一模試卷含解析_第4頁
安徽省石臺縣2024屆中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省石臺縣2024屆中考數學最后一模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.sin60°的值為()A. B. C. D.2.如圖,經過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數為()A.99° B.109° C.119° D.129°3.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)4.山西有著悠久的歷史,遠在100多萬年前就有古人類生息在這塊土地上.春秋時期,山西大部分為晉國領地,故山西簡稱為“晉”,戰國初韓、趙、魏三分晉,山西又有“三晉”之稱,下面四個以“晉”字為原型的Logo圖案中,是軸對稱圖形的共有()A. B. C. D.5.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環).下列說法中正確的是()A.若這5次成績的中位數為8,則x=8B.若這5次成績的眾數是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=86.如圖,已知反比函數的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.47.如圖,要使□ABCD成為矩形,需添加的條件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠28.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-19.二次函數的圖象如圖所示,則反比例函數與一次函數在同一坐標系中的大致圖象是()A. B. C. D.10.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標系中,點A的坐標為(a,3),點B的坐標是(4,b),若點A與點B關于原點O對稱,則ab=_____.12.已知關于x的方程x2+mx+4=0有兩個相等的實數根,則實數m的值是______.13.已知二次函數與一次函數的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.14.觀光塔是濰坊市區的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據以上觀測數據可求觀光塔的高CD是______m.15.2018年5月13日,中國首艘國產航空母艦首次執行海上試航任務,其排水量超過6萬噸,將數60000用科學記數法表示應為_______________.16.若正多邊形的一個外角是45°,則該正多邊形的邊數是_________.17.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機抽取一張,抽到中心對稱圖形的概率是________.三、解答題(共7小題,滿分69分)18.(10分)計算:2﹣1+|﹣|++2cos30°19.(5分)解不等式組:,并把解集在數軸上表示出來.20.(8分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數據的平均數、眾數和中位數:(3)根據樣本數據,估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。21.(10分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.22.(10分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.23.(12分)已知:如圖,∠ABC,射線BC上一點D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.24.(14分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發,以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發.如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結果保留根號)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】解:sin60°=.故選B.2、B【解析】

方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據平行線的性質求得∠ACF與∠BCF的度數,∠ACF與∠BCF的和即為∠C的度數.【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.3、A【解析】

根據位似變換的性質可知,△ODC∽△OBA,相似比是,根據已知數據可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.【點睛】本題考查的是位似變換,掌握位似變換與相似的關系是解題的關鍵,注意位似比與相似比的關系的應用.4、D【解析】

根據軸對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,故此選項錯誤;B、不是軸對稱圖形,故此選項錯誤;C、不是軸對稱圖形,故此選項錯誤;D、是軸對稱圖形,故此選項正確.

故選D.【點睛】此題主要考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、D【解析】

根據中位數的定義判斷A;根據眾數的定義判斷B;根據方差的定義判斷C;根據平均數的定義判斷D.【詳解】A、若這5次成績的中位數為8,則x為任意實數,故本選項錯誤;B、若這5次成績的眾數是8,則x為不是7與9的任意實數,故本選項錯誤;C、如果x=8,則平均數為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數、眾數、平均數和方差:一般地設n個數據,x1,x2,…xn的平均數為,則方差,它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.6、A【解析】

在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據周長求出直角邊之和,設其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設AB=x,則AO=2-x,根據勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設OA=+,與OA=-,求出結果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質,三角形面積求法,以及反比例函數k的幾何意義,熟練掌握反比例的圖象與性質是解本題關鍵.7、B【解析】

根據一個角是90度的平行四邊形是矩形進行選擇即可.【詳解】解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;

B、是一內角等于90°,可判斷平行四邊形ABCD成為矩形;

C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;

D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;故選:B.【點睛】本題主要應用的知識點為:矩形的判定.①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.8、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數的關系.9、D【解析】

根據拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數應在二、四象限,一次函數過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數圖象.10、D【解析】

由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】【分析】直接利用關于原點對稱點的性質得出a,b的值,進而得出答案.【詳解】∵點A的坐標為(a,3),點B的坐標是(4,b),點A與點B關于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【點睛】本題考查了關于原點對稱的點的坐標,熟知關于原點對稱的兩點的橫、縱坐標互為相反數是解題的關鍵.12、±4【解析】分析:由方程有兩個相等的實數根,得到根的判別式等于0,列出關于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.13、x<-2或x>1【解析】試題分析:根據函數圖象可得:當時,x<-2或x>1.考點:函數圖象的性質14、135【解析】試題分析:根據題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.15、【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】60000小數點向左移動4位得到6,所以60000用科學記數法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.16、1;【解析】

根據多邊形外角和是360度,正多邊形的各個內角相等,各個外角也相等,直接用360°÷45°可求得邊數.【詳解】∵多邊形外角和是360度,正多邊形的一個外角是45°,∴360°÷45°=1即該正多邊形的邊數是1.【點睛】本題主要考查了多邊形外角和是360度和正多邊形的性質(正多邊形的各個內角相等,各個外角也相等).17、【解析】

在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機抽取一張,抽到中心對稱圖形的概率為:.故答案為.三、解答題(共7小題,滿分69分)18、+4.【解析】

原式利用負整數指數冪法則,二次根式性質,以及特殊角的三角函數值計算即可求出值.【詳解】原式=++2+2×=+4.【點睛】本題考查了實數的運算,涉及了負整數指數冪、特殊角的三角函數值、二次根式的化簡等,熟練掌握各運算的運算法則是解本題的關鍵.19、則不等式組的解集是﹣1<x≤3,不等式組的解集在數軸上表示見解析.【解析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分就是不等式組的解集.【詳解】解不等式①得:x>﹣1,解不等式②得:x≤3,則不等式組的解集是:﹣1<x≤3,不等式組的解集在數軸上表示為:.【點睛】本題考查了解一元一次不等式組,熟知確定解集的方法“同大取大,同小取小,大小小大中間找,大大小小無處找”是解題的關鍵.也考查了在數軸上表示不等式組的解集.20、(1)25;(2)平均數:28.15,所以眾數是28,中位數為28,(3)體育測試成績得滿分的大約有300名學生.【解析】

(1)根據統計圖中的數據可以求得m的值;

(2)根據條形統計圖中的數據可以計算出平均數,得到眾數和中位數;

(3)根據樣本中得滿分所占的百分比,可以求得該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生.【詳解】解:(1),∴m的值為25;(2)平均數:,因為在這組樣本數據中,28出現了12次,出現的次數最多,所以眾數是28;因為將這組樣本數據按從小到大的順序排列,其中處于中間的兩個數都是28,所以這組樣本數據的中位數為28;(3)×2000=300(名)∴估計該中學九年級2000名學生中,體育測試成績得滿分的大約有300名學生.【點睛】本題考查條形統計圖、用樣本估計總體、加權平均數、中位數、眾數,解答本題的關鍵是明確它們各自的計算方法.21、(1)證明過程見解析;(2)【解析】

(1)根據CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論