2024-2025學年江西省師范大學附屬中學第二學期期末高三年級數(shù)學試題學科教學質(zhì)量監(jiān)測試卷含解析_第1頁
2024-2025學年江西省師范大學附屬中學第二學期期末高三年級數(shù)學試題學科教學質(zhì)量監(jiān)測試卷含解析_第2頁
2024-2025學年江西省師范大學附屬中學第二學期期末高三年級數(shù)學試題學科教學質(zhì)量監(jiān)測試卷含解析_第3頁
2024-2025學年江西省師范大學附屬中學第二學期期末高三年級數(shù)學試題學科教學質(zhì)量監(jiān)測試卷含解析_第4頁
2024-2025學年江西省師范大學附屬中學第二學期期末高三年級數(shù)學試題學科教學質(zhì)量監(jiān)測試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年江西省師范大學附屬中學第二學期期末高三年級數(shù)學試題學科教學質(zhì)量監(jiān)測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1282.若復數(shù)滿足,則()A. B. C. D.3.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.4.若函數(shù)有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.5.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.6.要得到函數(shù)的導函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍7.點為的三條中線的交點,且,,則的值為()A. B. C. D.8.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.259.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.11.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.12.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,為中點,則三棱錐的體積為________.14.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學生人數(shù)是__________.15.已知兩個單位向量滿足,則向量與的夾角為_____________.16.設、滿足約束條件,若的最小值是,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.82818.(12分)已知函數(shù).(1)當時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.19.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.20.(12分)若正數(shù)滿足,求的最小值.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.22.(10分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2.B【解析】

由題意得,,求解即可.【詳解】因為,所以.故選:B.本題考查復數(shù)的四則運算,考查運算求解能力,屬于基礎題.3.D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.4.A【解析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點:利用導數(shù)研究函數(shù)極值點【方法點睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導數(shù)為0的點,再判斷導數(shù)為0的點的左、右兩側(cè)的導數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側(cè)的導數(shù)值符號相反.5.B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.6.D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D本小題主要考查復合函數(shù)導數(shù)的計算,考查誘導公式,考查三角函數(shù)圖像變換,屬于基礎題.7.B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.8.D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.9.D【解析】

畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學結合的思想判斷方程的根,難度較大,屬于中檔題.10.A【解析】

根據(jù)輸入的值大小關系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A本題考查了對數(shù)式大小比較,條件程序框圖的簡單應用,屬于基礎題.11.B【解析】

根據(jù)分段函數(shù),分當,,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結合的方法研究.【詳解】當時,,令,在是增函數(shù),時,有一個零點,當時,,令當時,,在上單調(diào)遞增,當時,,在上單調(diào)遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.12.A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

試題分析:因為正三棱柱的底面邊長為,側(cè)棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.14.30【解析】

根據(jù)頻率直方圖中數(shù)據(jù)先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學生人數(shù)是.故答案為:30本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數(shù)據(jù)處理,數(shù)形運算的能力,屬于基礎題.15.【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.16.【解析】

畫出滿足條件的平面區(qū)域,求出交點的坐標,由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點.由得,顯然當直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結合思想,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【解析】

(1)排序后第10和第11兩個數(shù)的平均數(shù)為中位數(shù);(2)由莖葉圖可得列聯(lián)表;(3)由列聯(lián)表計算可得結論.【詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.本題考查莖葉圖,考查獨立性檢驗,正確認識莖葉圖是解題關鍵.18.(1).(2)【解析】

(1)利用導數(shù)的幾何意義求解即可;(2)利用導數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.本題主要考查了導數(shù)的幾何意義的應用,利用導數(shù)研究函數(shù)的零點問題,屬于中檔題.19.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.本題考查橢圓的標準方程及其幾何性質(zhì)、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.20.【解析】試題分析:由柯西不等式得,所以試題解析:因為均為正數(shù),且,所以.于是由均值不等式可知,當且僅當時,上式等號成立.從而.故的最小值為.此時.考點:柯西不等式21.(1),(2)最大值,最小值【解析】

(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論