




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Systems
Biology-IntroductionBiaoyang
Lin林標揚but
is
this
leading
to
increased
under-standing
of
the
nature
of
life?
Do
we,
in
fact,
understand
life
any
better
than
at
the
time
of
Erwin
Schr?dinger*
in
1944?E.
Schr?dinger
(1944)
What
is
life?
Cambridge
UniversityPressWe
are
living
through
a
period
in
which
the
main
activity
in
biological
research
is
the
accumulation
of
more
and
more
facts,Limitations
of
biochemistry
and
molecularbiologyThe
‘omes’GenomeTranscriptomeProteomeMetabolomeTranscriptome:
hybridizationarrayProteomeA
T
G
C
G
C
A
T
C
GA
T
G
C
G
C
A
T
C
GC
G
C
G
T
A
G
CTA
G
CG
C
GT
A
C
G
C
G
T
A
G
CT
A
C
G
C
G
T
A
G
CG
C
G
C
A
T
C
GA
T
C
GCG
CU
A
C
G
C
G
U
A
G
C
U
A
C
G
C
G
U
A
G
CATPWhat
Is
Systems
Biology??
Biology?went?top-down?for?the?last?50?years?–
From?cell?to?protein?to?gene?..?–
Huge?amounts?of?data?produced??Challenge:?put?the?pieces?back?together?again??
Attempts?to?create?predictive?models?of?cells,?organs,?biochemical?processes?and?complete?organisms?–?
Data
combined
with
computational,
mathematical
andengineering
disciplines–?
Model
<->
simulations
<->
experimentDefinition
of
Systems
BiologySystems
Biology系
的概念??
系
生物學中系
的概念或整體的概念
或哲學觀,最早可以追溯到公元前300
年的
里士多德(Aristotle)。整體哲學觀是指一個整體可以被人為地分為不同的組分,但是這個整體的特性并不能從這些組分中所含有的知識完全對它進行解釋。整體的哲學觀在中國古代的《易
》和傳
中醫學中也有詳細的記載和體現。摘自:
系
生物學,林標揚主編,浙江大學出版社??
系
生物學的第二個起源可以追溯到18世紀中晚期,
生理學之父
--ClaudeBernard提出的
體內恒定理論
(Homeostasis)。該理論是指一個生命有機體需要很多
態的、平衡的調節(包括正反饋和負反饋等),來維持其內環境達到一個穩定的、恒定的狀態。系
的概念摘自:
系
生物學,林標揚主編,浙江大學出版社??
系
生物學中系
概念的第三個起源可以追
溯到20世紀50年代,Nobert
Wiener提出的
控制論
和
Ludwig
von
Bertalanffy
提出的一般系
理論
。而系
生物學真正的起源是在20世紀90年代后期,人類基因組的完成以及高通量技術的產生,如DNA芯片技術、高通量蛋白質組學技術等的
展,使系
生物學真正
現
展。同時,計算科學計算能力的不斷提高,也促進了系
生物學的
展。系
的概念摘自:
系
生物學,林標揚主編,浙江大學出版社一般系
理論
(generalsystems
theory)??
CHAOS理論(混沌理論);??
元胞自
機、細胞自
機
(cellularautomata);??
突
論或災
論(catastrophe);??
等級層次理論
(hierachical
system)。摘自:
系
生物學,林標揚主編,浙江大學出版社混沌理論(Chaos
theory)??
混沌理論(Chaos
theory)是由美國氣象學家E.N.洛倫
茨(Lorenz)在20世紀60年代初研究天氣預報中大氣流
問題時首先
現的。他在計算機上模
地球大氣的研究中
現,只要計算機模
出
點的初始值有一個很微小的差異(小數點后第3位數),模
的結果就截然不同。由于在技術上不可能以無限精度測量初始值,因此我們不可能預言任何混沌系
(在這里指
期天氣預報)的最后結果。但是,洛倫茨還現,混沌系
盡管看起來雜亂無章,但其
具有某種規律(patterns)。對混沌系
的模
,計算機可
出幾千個可能的預測,這些預測在某種狀態范圍內是隨機分布的,但也有一定的模式。正如每日的天氣可以
化多端,不可對它進行
期的預測,但逐年的氣候還是保持某種穩定性的。摘自:
系
生物學,林標揚主編,浙江大學出版社??
1972年,洛倫茨做題為
Predictability:
Does
the
Flap
of
a
Butterfly’s
Wings
in
Brazil
set
off
a
Tornado
in
Texas?”(預測性:是否巴西蝴蝶的一個偶然的扇
將會在德克薩斯州制造一次
卷
?)的會議報告,也說明氣候的
化這個復雜系對起始的條件是非常敏感的。混沌理論(Chaos
theory)摘自:
系
生物學,林標揚主編,浙江大學出版社一般系
理論
(generalsystems
theory)??
CHAOS理論(混沌理論);??
元胞自
機、細胞自
機
(cellularautomata);??
突
論或災
論(catastrophe);??
等級層次理論
(hierachical
system)。摘自:
系
生物學,林標揚主編,浙江大學出版社一般系
理論
(generalsystems
theory)??
CHAOS理論(混沌理論);??
元胞自
機、細胞自
機
(cellularautomata);??
突
論或災
論(catastrophe);??
等級層次理論
(hierachical
system)。摘自:
系
生物學,林標揚主編,浙江大學出版社
災
論(catastrophe
theory)??
災
論(catastrophe
theory),或稱突
論,是指在非線性系
中,
某些參數的微小
化,就可使整個系
失去平衡,使系
生重
大的、突然的
化。??
在20世紀60年代末,災
論是由法國數學家R.托姆(René
Thom)
為解釋胚胎學的成胚過程而提出來的(Thom,1972)。70年代
以后,E.C.塞曼(Christopher
Zeeman)等人進一步
展了災
論
,并把它應用到生物學、生態學、醫學、
學等領域。災
論研
究跳
式轉
、不連續過程和突
的質
。災
論建立在結構穩
定性的基礎上。結構穩定性反映同一物種在千差萬
形態中的
相似性。穩定結構的喪失,就是突
的開始。災
論是研究不連續現象的一個新數學分支,也是一般形態學的一種理論,能為
自然界中形態的
生和演化提供數學模型。摘自:
系
生物學,林標揚主編,浙江大學出版社一般系
理論
(generalsystems
theory)??
CHAOS理論(混沌理論);??
元胞自
機、細胞自
機
(cellularautomata);??
突
論或災
論(catastrophe);??
等級層次理論
(hierachical
system)。摘自:
系
生物學,林標揚主編,浙江大學出版社等級層次理論(Hierarchy
Theory)??
等級和層次普遍存在于我們的社會、生物系
以及生物分類等。等
級層次理論(Hierarchy
Theory)就是從數學角度把一個系
分成
有等級、有層次的不同部分(Pattee,1973)。在不同等級
,有一
定的非對稱關系(asymmetric
relationships),這種非對稱關系是指上一層的等級高于下一層的等級,并且每一等級與上面層次的關系和與下面層次的關系是不對稱的;從生物學角度來說,也就是更高一層次的功能并不能在另外一個層次上被還原。根據等級層次理論,一個系
的復雜性(Complexity)與復合性(complicatedness)是不同的:若一個等級系
由許多低水平的層次所構成,并且有相當簡單的組
結構,這種層次不豐富的等級結構不屬于復雜(complex)系
,而是被認為是復合(complicated)系
。即假如一個很大系
的組
結構非常簡單,則綜合在一起的行為還是比較簡單的。反之,假如一個復合系
的結構比較復雜,則其行為也會比較復雜。摘自:
系
生物學,林標揚主編,浙江大學出版社History??
Term
coined
at
1960s,
however
theoretical
people
and
experimental
biologists
diverged??
Renaissance
at
1990s–?Biology
becoming
cross-disciplinary,information
based,
high
throughput
scienceprotein-inhibitorbinding
constantsThe
systems
biology
agenda
Genome-wideprotein-metabolite
binding
constants
Genome-wide
high-throughput
enzyme
kinetics
Genome-wide
protein-proteinbinding
constants
Transcriptome
Proteome
MetabolomeRegulatory
interactions
Model
organism/
system
of
choiceExperimentationAnalysisNew
theoryNew
methodologyGenome-wide
Database,
schema
standards(Chemical
genetics)
Modelling;
ODEs,
Constraint-based
optimisation,
Solving
inverse
problems,
Novel
strategiesIteration
between
theory
and
experiment
Over-
&
Underlying
theories
KNOWLEDGE/
HYPOTHESISINDUCTIONDEDUCTIONOBSERVATIONS/
DATAINDUCTIONINDUCTIONDEDUCTIONDEDUCTIONDEDUCTIONDEDUCTION
Knowledge/Ideas
by
hypothesis
Knowledge/Ideas
by
hypothesisKnowledge/OBSERVATIONS/
DATA
Underlying
theory(Physics,
Chemistry)OBSERVATIONS/
DATAIdeas
by
hypothesis
INDUCTION
OBSERVATIONS/
DATASystems
Biology
has
variousmodes??
Top
down
versus
bottom-up;
analytic
versus
synthetic;
data
driven
versus
hypothesis
driven??
Historical:
molecular
biology
versusmathematical
biologyThe
goals
of
Systems
BiologySystems
Biology
is:Carnap
(Philosophical
Foundationsof
Physics
(1966))?Philosophy
of
Systems
BiologyThomas
Kuhn:
ParadigmstruggleKey
features
of
biologicalsystemsEmergentRobustness
Complexity
ModularityEmergent
PropertiesEmergent
properties
系
涌現性??
系
涌現性(emergence)是指一個系
自
形成一些新的系
特性,這些特性不能從其組成部分的特性中預測出來。因此,系
涌現性有三個重要的特征:①原來并不存在的特征;②新的、
可定性的,新涌現的特性具有質的突
;③不能從其組成部分的
特性中預測,所以系
涌現性有
于系
的預測性。系
的預測
性(anticipation)是指系
可被預測的一些特性。如某些系
的組
成部分、特征以及環境的相互作用有一定的規律性,給出一定的
參數后,即可預測系
的特性。此時,即使產生新的系
特征,也是可被預測的,有于系
涌現性所產生的特征。??
摘自:
系
生物學,林標揚主編,浙江大學出版社
Robustness
in
SimpleBiochemical
Networks–?–?Barkai
N,
Leibler
S.Nature
1997
Jun
26;387(6636):913-7“The
complexity
of
biochemical
networks
raises
the
question
ofthe
stability
of
their
functioning…The
key
properties
of
biochemical
networks
are
robust:
relativelyinsensitive
to
the
precise
values
of
biochemical
parameters.
“Papers
on
Robustness–?–?–?–?–?Experimental
support:
Robustness
in
bacterial
chemotaxisAlon
U,
Surette
MG,
Barkai
N,
Leibler
S.
Nature
(1999)Establishment
of
developmental
precision
and
proportions
in
theearly
Drosophila
embryo.
Houchmandzadeh
B,
Wieschaus
E,
Leibler
S.Nature
(2002)Robustness
of
the
BMP
morphogen
gradient
in
Drosophilaembryonic
patterning.
Eldar
A,
Dorfman
R,
Weiss
D,
Ashe
H,
Shilo
BZ,
BarkaiN.
Nature
(2002)Physical
properties
determining
self-organization
of
motors
andmicrotubules.Surrey
T,
Nedelec
F,
Leibler
S,
Karsenti
E.
Science
2001Integrated
genomic
and
proteomic
analyses
of
a
systematicallyperturbed
metabolic
network.Ideker
T,
Thorsson
V,
Ranish
JA,
Christmas
R,
Buhler
J,
Eng
JK,
Bumgarner
R,Goodlett
DR,
Aebersold
R,
Hood
L
Science
2001
穩健性??
生物系
都是
態的系
。
態系
理論中,一個很重要的概念就
是系
狀態
(system
state)。系
狀態是指用某一時點的足
多
的信息來預測未來系
行為的系
描述,常用一組
量來表示。
如在代謝物網絡的微分方程模型中,系
狀態就是每一種化學
物質濃度的集合;在隨機模型中,系
狀態是一個概率分布或者
每種生物分子數的集合。一個系
的穩定態(steady
state),或稱
穩定狀態(stationary
state)或不
點(fixed
point),
指的是在時
上所有系
量的值都保持相對不
的狀態。??
生物系
的穩健性是指生物系
能抵抗內部和外部干擾,并維持其功能的一種特性(Kitano
2004;
Kitano
2007)。理解生物系
的穩健性是深刻理解生命現象的一個基礎。生物系
的穩健性基本可以體現在以下三個方面。①適應性
(adaptation):即生物體對環境條件
化的適應;②不敏感性(parameter
insensitivity):即系對某些
態參數是相對不敏感的;③逐漸地降解性(graceful
degradation):指在一般的條件下,單個系
的功能受到損害后,整個系
表現為慢慢破壞和降解,而不是災難性的破壞。
摘自:
系
生物學,林標揚主編,浙江大學出版社??
要指出的是穩健性(robustness)、穩定性
(stability)或者是體內恒
定理論(homeostasis),概念相近,但又有不同。穩健性是一個更
廣泛的概念,它主要是指維持系
功能的穩定性;而穩定性或者
體內恒定規律是指維持系
狀態的穩定性(即穩定態)。一個穩
健的系
可以有幾個不同的穩定態,只要在不同的穩定態下,該
系
都能維持它的功能,就稱為系
的穩健性;一個系
可以在
不同穩定態之
化,但仍維持了系
的功能,這也稱為系
的
穩健性。比如一個細胞在極端的環境,如熱休克的狀態下,
常
會產生其他蛋白(如熱休克蛋白)來維持細胞的活性,使細胞進入
另一個新的穩定狀態,也稱為細胞的穩健性。又如細菌在抗生素
作用下會產生抗
性,所以細菌就由不抗
狀態
成抗
狀態,
即細菌有系
的穩健性,可以在抗生素條件下生存。再如艾滋病毒能以很高的突
率來應付機體的免疫系
以及綜合療法,
即艾滋病毒可以根據DNA的突
產生無窮多的穩定狀態來維持
其生命和致病性。摘自:
系
生物學,林標揚主編,浙江大學出版社圖1.2
穩健性(robustness)、穩定性(stability)或者體內恒定(homeostasis)。假定系
的起始狀態在穩定態1的中心,一個系擾可以把系
推到穩定態1的
緣,但系
仍可回到穩定態1,
這就是系
的穩定性和體內恒定。如在擾后,系
轉折到穩定態2,系
即喪失穩定態1的穩定性,并在穩定態2狀態下達到新的穩定性。如果系
在穩定態2的功能與穩定態1相比是不
的,則可以說系
具有穩健性。在極端的情況下,系
可以在多種不同的穩定態中轉
而保持其穩健性。Complexity
in
interactionsA
complex
problem–?35,000
genes
either
on
or
off
(huge
simplification!)
would
have
2^35,000
solutions–?Things
can
be
simplified
by
grouping
andfinding
key
genes
which
regulate
manyother
genes
and
genes
which
may
onlyinteract
with
one
other
gene–?In
reality
there
are
lots
of
subtle
interactions
and
non-binary
states.Some
real
numbers
from
E.coli??
630
transcription
units
controlled
by
97
transcription
factors.??
100
enzymes
that
catalyse
more
than
one
biochemicalreaction
.??
68
cases
where
the
same
reaction
is
catalysed
by
more
thanone
enzyme.??
99
cases
where
one
reaction
participates
in
multiplepathways.??
The
regulatory
network
is
at
most
3
nodes
deep.??
50
of
85
studied
transcription
factors
do
not
regulate
othertranscription
factors,
lots
of
negative
auto-regulationTheoretical
hurdles
to
jump??
Switching
delay
(McAdams
and
Arkin
1997)–?
More
transcripts,
less
protein/transcript
=
more
energy
lessnoise–?
Fewer
transcripts,
More
protein/transcript
=
less
energymore
noise.–?
Selection
drives
this
trade-off–?
Two
critical
times;
how
long
after
trigger
does
a
protein
reach
a
critical
level
how
long
after
removal
of
the
trigger
does
the
protein
level
decline
to
below
critical
level.–?
How
critical
is
the
levelComplexity??
Simulations
found
3-20
minutes
from
transcript
toactive
protein.??
Many
processes
are
stochastic
(random)
notdeterministic.??
The
probabilities
are
definitely
skewed
but
still
havelong
tails–?
This
means
that
with
a
large
population
there
are
cells
which
may
be
in
very
different
states
than
most
of
the
rest
of
the
population.–?
Complex
interplay
between
regulation,
lag
and
activity
thathas
implications
when
trying
to
reconstruct
a
network.Networks-the
“system”
ofsystems
biology??
Humans
produce
some
pretty
complex
structures.–?
Computer
chips–?
Oil
refineries–?
Airplanes??
The
goals
for
these
structures
are
similar
to
life
forms–?
Survive–?
Do
it
at
a
cheap
cost–?
Reproduce/evolve??Basic
network
terminology??
Nodes??
Edges??
Scale-free–?
Power
laws–?
Exponential/Random
networks??
Robustness–?
Ability
to
respond
to
different
conditions–?
Robust
yet
fragile??
Complexity–?
Not
the
number
of
parts…
consider
a
lump
of
coal–?
The
number
of
different
parts
AND
the
organization
of
thoseparts摘自:
系
生物學,林標揚主編,浙江大學出版社Graph
theory,
networks??
Two
types
ofnetworks–?
Exponential
and
scalefree–?
Most
cellular
networksare
scale
free–?
It
makes
the
mostsense
to
study
theinteractions
of
thecentral
nodes
not
theouter
nodesHigh
Throughput
data
sources??
Microarray
data–?
Already
well
covered
in
the
last
couple
of
weeks.–?
Probably
the
most
mature??
Proteomics–?
Several
processes??
Separation
of
the
products??
Digest
the
products??
Find
the
mass
of
the
products–?
Problems??
Contamination??
Phosphorylation,
glycosylation,
Acylation,
methylation,cleavage.Cytoscape??
Software
tool
to
manage
data
and
develop
predictive
models(Genome
Research
Shannon
et
al.
2003)??
Not
directed
specifically
to
a
cellular
process
or
diseasepathway??
Combine–?
Protein-protein
interactions–?
RNA
expression–?
Genetic
interactions–?
Protein-dna
interactions–?
Protein
abundance–?
Protein
phosphorylation–?
Metabolite
concentrations??
Integrate
(global)
molecular
interactions
and
statemeasurements.??
Organized
around
a
network
graphSurviving
heat
shock:
Control
strategies
for
robustness
andperformance??
Taking
engineering
principles
and
applying
them
to
systems
biologyAir
conditioning??????????Set
point
(temperature
you
set)Sensor
(thermostat)Error
signal
(temp
exceeded)Controller
(thermostat/ac)Actuator
(ac
on)Heat
shock
protein??
Increased
heat
->
mRNA
-δ32mRNAmelting??
Make
δ32–?Interacts
with
RNAP
to
activate
specificsub-sets
of
genes??
Make
a
bunch
>10,000
protein
copies
todeal
with
heatHeat
shock
responseComponents??
DNAK–?
Chaperone
representative??
Binds
to
δ32and
degraded
proteins??
FtsH–?
Protease
degrading
δ32–?
Titrated
away
by
degraded
proteins??
δ32–?
Temperature
regulation
at
translationWhy
make
it
more
difficult???
Need
to
turn
off
(cooler)??
Don’t
want
to
activate
inappropriately
(energywaste)??
Fast
response
(proteins
degrading)??
Proportional
response
(it’s
a
little
hot)Theoretical
types
of
controlSummary??
Sometimes
simple
is
better
but:??
Often
some
complexity
adds
desirablefeatures??
Trade
off
between
complexity,robustness,
and
economy??
Modules,
reuse–?“Helps”
evolution–?Can
help
biologistTechniques
for
complexity??
Advanced
Methods
and
Algorithms
for
BiologicalNetworks
Analysis“such
questions
are
conventionally
viewed
as
computationally
intractable.
Thus,
biologists
and
engineers
alike
are
often
forced
to
resort
to
inefficient
simulation
methods
or
translate
their
problems
into
biologically
unnatural
terms
in
order
to
use
available
algorithms;
hence
the
necessity
for
an
algorithmic
scalable
infrastructure
the
systematically
addresses
these
questions”Problems
of
modeling??
Compare
model
to
data–?But
with
complex
model
and
largeparameter
set
any
data
set
can
be
made
tofit–?Could
a
simpler
model
also
work–?Untested
parametersAlternative
to
exhaustivesearches??
Use
sum
of
squares
to
generate
dynamicalbehavior
barriers–?
Don’t
test
all
possible
values
just
see
where
theymake
a
difference??
Stocastic
simulation
is
another
way
but–?
Uses
months
to
simulate
picoseconds??
Robustness
provides
a
key–?
Biological
systems
must
exhibit
robustness–?
This
robustness
also
limits
the
search
spaceA
Grand
ConvergenceNanotechnologySystems
biologyGenetics,
genomics
Technology
Has
TransformedContemporary
Systems
BiologyQuantitative
measurements
for
all
types
of
biologicalinformation.Global
measurements--measure
dynamic
changes
in
all
genes,mRNAs,
proteins,
etc,
across
state
changes.Computational
and
mathematically
integrate
different
data
types--DNA,
RNA,
Protein,
Interactions,
etc.--to
capture
distinct
types
of
environmental
information.Dynamic
measurements--across
developmental,
physiologicaldisease,
or
environmental
exposure
transitions.Utilization
of
carefully
formulated
systems
perturbations.Integration
of
discovery-
and
hypothesis-driven
(global
or
focused)
measurements
.
Perturbation--measurement--model--
hypothesis--perturbation--etc.Sixessentialfeaturesofcontemporarysystemsbiology
SystemsDynamic
Networks??????????Elements
(genes,proteins)
–
“nodes”Interactions
between
the
elements
–“edges”--dynamicElements
and
their
interactions
are
affectedby
the
Context
of
other
systems
within--cells
and
organismsInteractions
between/among
elements
giverise
to
the
system’s
Emergent
propertiesUnique
features
–?
Global–?–?Integrate
different
data
typesMillion
of
data
measurementsTwo
Types
of
DigitalInformation
Encode
TwoDifferent
Types
of
Networks??
Genes
encode
protein
networks
andprotein
machines??
Cis-control
elements,
together
with
their
cognate
transcription
factors,
specify
the
architecture
of
gene
regulatory
networksMostSophisticatedGeneRegulatory(andProtein)NetworkDefinedtoDateLevels
of
Biological
Information
DNA
mRNA
ProteinProtein
interactions
and
biomodulesProtein
and
gene
networks
Cells
Organs
IndividualsPopulationsEcologiesData
Integration,
Managementand
Modelingof
a
SystemNano
LabDetailed
GraphicRepresentation
CYTOSCAPE
Kinetic
model
of
Galactose
UtilizationNan
o
LabG4D_DNA4'G80D_G4D_DNA4'G4D_DNA80'G80D_G4D_DNA80'G4D_DNA3'G80D_G4D_DNA3'G3D_G80D'
=
kf*G4D_free*DNA4
-
kr*G4D_DNA4=
kf*G80D_free*G4D_DNA4
-
kr*G80D_G4D_DNA4
=
kf*G4D_free*DNA80
-
kr*G4D_DNA80=
kf*G80D_free*G4D_DNA80
-
kr*G80D_G4D_DNA80
=
kf*G4D_free*DNA3
-
kr*G4D_DNA3=
kf*G80D_free*G4D_DNA3
-
kr*G80D_G4D_DNA3
=
10*kf*G3D_free*G80D_free
-
kr*G3D_G80DG4_RNA'G80_RNA'G3_RNA'G4_proteinG80_protein=
0.1*kt*(G4D_DNA4+ubiq_in)*(1-G80D_G4D_DNA4)
-
0.1*kr*G4_RNA
=
kt*G4D_DNA80*(1-G80D_G4D_DNA80)
-
0.01*kr*G80_RNA=
0.1*kt*(galactose*G4D_DNA3)*(1-G80D_G4D_DNA3)
-
0.01*kr*G3_RNA
=
delay(G4_RNA,4)
=
delay(G80_RNA,4)G3_proteinG4D_totalG80D_totalG3D_total=
delay(G3_RNA,4)=
G4_protein/2=
G80_protein/2=
G3_protein/2G4D_freeG80D_freeG3D_freeDNA4DNA80DNA3kfkrktgalactoseubiq_in
=
G4D_total
–
(G4D_DNA4+G4D_DNA80+G4D_DNA3+G80D_G4D_DNA4+G80D_G4D_DNA80+G80D_G4D_DNA3)
=
G80D_total
-
(G3D_G80D+G80D_G4D_DNA4+G80D_G4D_DNA80+G80D_G4D_DNA3)
=
G3D_total
-
(G3D_G80D)
=
1
-
(G4D_DNA4
+
G80D_G4D_DNA4)=
1
-
(G4D_DNA80
+
G80D_G4D_DNA80)
=
1
-
(G4D_DNA3
+
G80D_G4D_DNA3)
=1
=1
=
10
=
STEP(10,
500)=
10MathematicalRepresentationof
a
System051015202530354045
Leading
Institutions
in
Systems
biologyInstitute
for
Systems
Biology(US)
MIT
(US)
Weizmann
Institute
(IL)
UCSD
Systems
Biology(US)
Caltech
(US)
Kitano
Inst.(JP)
Keio
University(JP)
Harvard
(US)
Free
UniversityAmsterdam
(NL)
Stanford
(US)
Number
of
top
3
votes
(N=137)Source:
EUSYSBIO
survey
by
Fraunhofer
ISI
2004Case
study-Galactoseutilization
in
yeast–?Classic
last
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級下冊第六單元 月兒彎彎唱歌 小小的船教案
- 七年級英語下冊 Unit 1 A Trip to the Silk Road Lesson 1 A Trip to China教學設計 (新版)冀教版
- 小學英語人教版 (PEP)四年級上冊Unit 6 Meet my family!Part A第三課時教學設計
- 九年級語文上冊 第五單元 19談創造性思維教學設計 新人教版
- 綜合性學習 走進小說天地2024-2025學年九年級語文上冊同步教學設計(河北專版)
- 7《 玩轉記憶魔方》(教案)-大象版心理健康五年級001
- 9.3 文化強國與文化自信 課件高中政治統編版必修四哲學與文化
- 2025年度大學生百科知識競賽試卷及答案(共六套)
- 任務一:認識中草藥(教案)-2023-2024學年五年級下冊勞動魯科版
- 數學四年級上冊9 總復習第3課時教案
- 防雷安全知識培訓課件
- 政務服務人員培訓
- 寵物醫院招聘課件
- 2025建筑安全員C證考試(專職安全員)題庫及答案
- 安全標識(教學設計)-2024-2025學年浙美版(2012)美術四年級下冊
- 2024-2025學年七年級下冊歷史 【教學課件】第10課《金與南宋的對峙》
- 滁州地鐵筆試試題及答案
- 《生態環境規劃》課程教學大綱
- SAP模塊介紹及功能模塊關聯圖(ppt 63頁)
- 2018 年全國高校俄語專業四級水平測試試卷
- 年產6萬噸飼料廠建設項目可行性研究報告-甲乙丙資信
評論
0/150
提交評論