




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市江岸區武漢七一華源中學2024年中考數學押題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在,0,-1,這四個數中,最小的數是()A. B.0 C. D.-12.一個多邊形的內角和比它的外角和的倍少180°,那么這個多邊形的邊數是()A.7 B.8 C.9 D.103.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.84.小張同學制作了四張材質和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應的書名和作者姓名的概率是()A. B. C. D.5.的相反數是()A. B.2 C. D.6.化簡的結果是()A.1 B. C. D.7.某同學將自己7次體育測試成績(單位:分)繪制成折線統計圖,則該同學7次測試成績的眾數和中位數分別是()A.50和48 B.50和47 C.48和48 D.48和438.下列二次根式中,為最簡二次根式的是()A. B. C. D.9.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形10.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現在有如下4個結論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結論中,正確的共有()個A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,從中任意摸出一個球恰好是紅球的概率是____.12.如圖,在平面直角坐標系中,函數y=(x>0)的圖象經過矩形OABC的邊AB、BC的中點E、F,則四邊形OEBF的面積為________.13.分解因式:2a4﹣4a2+2=_____.14.計算:3﹣(﹣2)=____.15.當x=_________時,分式的值為零.16.定義一種新運算:x*y=,如2*1==3,則(4*2)*(﹣1)=_____.三、解答題(共8題,共72分)17.(8分)在“植樹節”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規則如下:在兩個盒子內分別裝入標有數字1,2,3,4的四個和標有數字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規則不公平”,你認同他的說法嗎?請說明理由.18.(8分)某校有3000名學生.為了解全校學生的上學方式,該校數學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統計圖某校部分學生主要上學方式條形統計圖根據以上信息,回答下列問題:參與本次問卷調查的學生共有____人,其中選擇B類的人數有____人.在扇形統計圖中,求E類對應的扇形圓心角α的度數,并補全條形統計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數.19.(8分)某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件.(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務;(2)若加工童裝一件可獲利80元,加工成人裝一件可獲利120元,那么該車間加工完這批服裝后,共可獲利多少元.20.(8分)學習了正多邊形之后,小馬同學發現利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數式表示△BDQ的面積S△BDQ.21.(8分)如圖,已知直線AB經過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數關系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?22.(10分)如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉60°后得到CE,連接AE.求證:AE∥BC.23.(12分)如圖,正方形ABCD的邊長為2,BC邊在x軸上,BC的中點與原點O重合,過定點M(-2,0)與動點P(0,t)的直線MP記作l.(1)若l的解析式為y=2x+4,判斷此時點A是否在直線l上,并說明理由;(2)當直線l與AD邊有公共點時,求t的取值范圍.24.列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:因為負數小于0,正數大于0,正數大于負數,所以在,0,-1,這四個數中,最小的數是-1,故選D.考點:正負數的大小比較.2、A【解析】
設這個正多邊形的邊數是n,就得到方程,從而求出邊數,即可求出答案.【詳解】設這個多邊形的邊數為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內角與外角的知識點,此題要結合多邊形的內角和與外角和,根據題目中的等量關系,構建方程求解即可.3、C【解析】
∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.4、D【解析】
根據題意先畫出樹狀圖得出所有等情況數和到的書簽正好是相對應的書名和作者姓名的情況數,再根據概率公式即可得出答案.【詳解】解:根據題意畫圖如下:共有12種等情況數,抽到的書簽正好是相對應的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應的書名和作者姓名的概率是=;故選D.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.5、D【解析】
因為-+=0,所以-的相反數是.故選D.6、A【解析】原式=?(x–1)2+=+==1,故選A.7、A【解析】
由折線統計圖,可得該同學7次體育測試成績,進而求出眾數和中位數即可.【詳解】由折線統計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數為50,中位數為48,故選:A.【點睛】本題考查了眾數和中位數,解題的關鍵是利用折線統計圖獲取有效的信息.8、B【解析】
最簡二次根式必須滿足以下兩個條件:1.被開方數的因數是(整數),因式是(整式)(分母中不含根號)2.被開方數中不含能開提盡方的(因數)或(因式).【詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【點睛】本題考核知識點:最簡二次根式.解題關鍵點:理解最簡二次根式條件.9、D【解析】
連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴C正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正確.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D錯誤.
故選D.【點睛】本題考查了菱形的性質、等邊三角形的判定與性質以及全等三角形的判定與性質,解題的關鍵是正確尋找全等三角形解決問題.10、C【解析】【分析】根據正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據全等三角形性質可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,有一定的難度.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目;②全部情況的總數.二者的比值就是其發生的概率的大小.【詳解】∵一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,∴從中任意摸出一個球恰好是紅球的概率為:,故答案為.【點睛】本題考查了概率公式的應用.注意概率=所求情況數與總情況數之比.12、2【解析】設矩形OABC中點B的坐標為,∵點E、F是AB、BC的中點,∴點E、F的坐標分別為:、,∵點E、F都在反比例函數的圖象上,∴S△OCF==,S△OAE=,∴S矩形OABC=,∴S四邊形OEBF=S矩形OABC-S△OAE-S△OCF=.即四邊形OEBF的面積為2.點睛:反比例函數中“”的幾何意義為:若點P是反比例函數圖象上的一點,連接坐標原點O和點P,過點P向坐標軸作垂線段,垂足為點D,則S△OPD=.13、1(a+1)1(a﹣1)1.【解析】
原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案為:1(a+1)1(a﹣1)1【點睛】本題主要考查提取公因式與公式法的綜合運用,關鍵要掌握提取公因式之后,根據多項式的項數來選擇方法繼續因式分解,如果多項式是兩項,則考慮用平方差公式;如果是三項,則考慮用完全平方公式.14、2+2【解析】
根據平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關鍵.15、2【解析】
根據若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關鍵.16、-1【解析】
利用題中的新定義計算即可求出值.【詳解】解:根據題中的新定義得:原式=*(﹣1)=3*(﹣1)==﹣1.故答案為﹣1.【點睛】本題考查了有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.三、解答題(共8題,共72分)17、(1);(2)規則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數,然后根據概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數,其中摸出的球上的數字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數與總情況數之比.18、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】
(1)根據“騎電動車”上下的人數除以所占的百分比,即可得到調查學生數;用調查學生數乘以選擇類的人數所占的百分比,即可求出選擇類的人數.
(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數;由總學生數求出選擇公共交通的人數,補全統計圖即可;
(3)由總人數乘以“綠色出行”的百分比,即可得到結果.【詳解】(1)參與本次問卷調查的學生共有:(人);選擇類的人數有:故答案為450、63;(2)類所占的百分比為:類對應的扇形圓心角的度數為:選擇類的人數為:(人).補全條形統計圖為:(3)估計該校每天“綠色出行”的學生人數為3000×(1-14%-4%)=2460人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、(1)該車間應安排4天加工童裝,6天加工成人裝;(2)36000元.【解析】
(1)利用某車間計劃用10天加工一批出口童裝和成人裝共360件,分別得出方程組成方程組求出即可;(2)利用(1)中所求,分別得出兩種服裝獲利即可得出答案.【詳解】解:(1)設該車間應安排x天加工童裝,y天加工成人裝,由題意得:,解得:,答:該車間應安排4天加工童裝,6天加工成人裝;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:該車間加工完這批服裝后,共可獲利36000元.【點睛】本題考查二元一次方程組的應用.20、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根據要求利用全等三角形的判定和性質畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質、多邊形內角和、角平分線的性質、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關鍵。21、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】
(1)首先求得點A的坐標,然后利用待定系數法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設M(a,a2),得MN=a2+1,然后根據點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設直線的函數關系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當x=8時,y=16,
∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(32,0)(3)設M(a,a2),則MN=,又∵點P與點M縱坐標相同,∴x+4=a2,∴x=,∴點P的橫坐標為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當a=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機三級數據庫相關法規解讀試題及答案
- 公司職工體檢管理制度
- 刑偵部門分級管理制度
- 制定信息安全管理制度
- 公司員工吵架管理制度
- 單位設備器材管理制度
- 宿舍設備安全管理制度
- 印刷費用成本管理制度
- 加壓泵站維護管理制度
- 賓館管理日常管理制度
- 農行反洗錢與制裁合規知識競賽考試題庫大全-上下
- DGTJ08-202-2020鉆孔灌注樁施工規程 上海市
- 充電樁基本知識課件
- 中職電子類面試題及答案
- 作風建設學習教育讀書班交流發言提綱
- 2025年社會工作者職業水平考試中級實務模擬試卷:社會工作專業能力與團隊協作能力試題
- 2025年《AI人工智能知識競賽》題庫及答案解析
- 全國公開課一等獎人教版小學數學五年級下冊《數學廣角-找次品》課件
- 2022年高中物理同步講義(選修性必修3)第11講-熱力學第一定律(原卷版)
- 電工電焊工安全培訓
- 紅色體育知到智慧樹章節測試課后答案2024年秋西安體育學院
評論
0/150
提交評論