




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省百所重點中學高三一模(期末)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.2.的展開式中的一次項系數為()A. B. C. D.3.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.44.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數為()A.1 B.2 C.3 D.45.明代數學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.6.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.48.已知函數,則函數的零點所在區間為()A. B. C. D.9.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.8010.各項都是正數的等比數列的公比,且成等差數列,則的值為()A. B.C. D.或11.已知集合,集合,則等于()A. B.C. D.12.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業里程達到13.1萬公里,其中高鐵營業里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數依次成等差數列二、填空題:本題共4小題,每小題5分,共20分。13.已知是偶函數,則的最小值為___________.14.已知復數對應的點位于第二象限,則實數的范圍為______.15.已知函數函數,其中,若函數恰有4個零點,則的取值范圍是__________.16.已知實數滿約束條件,則的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(1)證明:當時,;(2)當時,求整數的最大值.(參考數據:,)18.(12分)如圖:在中,,,.(1)求角;(2)設為的中點,求中線的長.19.(12分)設復數滿足(為虛數單位),則的模為______.20.(12分)隨著電子閱讀的普及,傳統紙質媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質廣告收入如下表所示:根據這9年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.243;根據后5年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.984.(1)如果要用線性回歸方程預測該雜志社2019年的紙質廣告收入,現在有兩個方案,方案一:選取這9年數據進行預測,方案二:選取后5年數據進行預測.從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?附:相關性檢驗的臨界值表:(2)某購物網站同時銷售某本暢銷書籍的紙質版本和電子書,據統計,在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,現用此統計結果作為概率,若從上述讀者中隨機調查了3位,求購買電子書人數多于只購買紙質版本人數的概率.21.(12分)已知函數,.(Ⅰ)判斷函數在區間上零點的個數,并證明;(Ⅱ)函數在區間上的極值點從小到大分別為,,證明:22.(10分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.2.B【解析】
根據多項式乘法法則得出的一次項系數,然后由等差數列的前項和公式和組合數公式得出結論.【詳解】由題意展開式中的一次項系數為.故選:B.本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數.同時本題考查了組合數公式.3.C【解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.4.C【解析】
①:由拋物線的定義可知,從而可求的坐標;②:做關于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設出直線方程,聯立直線與拋物線方程,結合韋達定理,可知焦點坐標的關系,進而可求,從而可判斷出的關系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設,由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設,則關于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設方程為:,設與拋物線的交點坐標為,聯立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.本題考查了拋物線的定義,考查了直線與拋物線的位置關系,考查了拋物線的性質,考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結合初中的“飲馬問題”分析出何時取最小值.5.C【解析】
根據程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環,輸出結果為,由題意,得.故選:本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.6.B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.7.D【解析】
利用導數的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D本題考查導數的幾何意義,考查運算求解能力,是基礎題8.A【解析】
首先求得時,的取值范圍.然后求得時,的單調性和零點,令,根據“時,的取值范圍”得到,利用零點存在性定理,求得函數的零點所在區間.【詳解】當時,.當時,為增函數,且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數的零點所在區間為.故選:A本小題主要考查分段函數的性質,考查符合函數零點,考查零點存在性定理,考查函數的單調性,考查化歸與轉化的數學思想方法,屬于中檔題.9.D【解析】
根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.10.C【解析】分析:解決該題的關鍵是求得等比數列的公比,利用題中所給的條件,建立項之間的關系,從而得到公比所滿足的等量關系式,解方程即可得結果.詳解:根據題意有,即,因為數列各項都是正數,所以,而,故選C.點睛:該題應用題的條件可以求得等比數列的公比,而待求量就是,代入即可得結果.11.B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.12.D【解析】
由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數列,故錯.故選:D本題考查統計的知識,考查數據處理能力和應用意識,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
由偶函數性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2考查函數的奇偶性、基本不等式,屬于基礎題14.【解析】
由復數對應的點,在第二象限,得,且,從而求出實數的范圍.【詳解】解:∵復數對應的點位于第二象限,∴,且,∴,故答案為:.本題主要考查復數與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.15.【解析】∵,∴,∵函數y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數的函數值,要先確定要求值的自變量屬于哪一段區間,然后代入該段的解析式求值,當出現f(f(a))的形式時,應從內到外依次求值.(2)當給出函數值求自變量的值時,先假設所求的值在分段函數定義區間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.16.8【解析】
畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.本題考查了線性規劃問題,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)將代入函數解析式可得,構造函數,求得并令,由導函數符號判斷函數單調性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數求導,變形后討論當時的函數單調情況:當時,可知滿足題意;將不等式化簡后構造函數,利用導函數求得極值點與函數的單調性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數的最大值;當時不滿足題意,因為求整數的最大值,所以時無需再討論.【詳解】(1)證明:當時代入可得,令,,則,令解得,當時,所以在單調遞增,當時,所以在單調遞減,所以,則,即成立.(2)函數則,若時,當時,,則在時單調遞減,所以,即當時成立;所以此時需滿足的整數解即可,將不等式化簡可得,令則令解得,當時,即在內單調遞減,當時,即在內單調遞增,所以當時取得最小值,則,,,所以此時滿足的整數的最大值為;當時,在時,此時,與題意矛盾,所以不成立.因為求整數的最大值,所以時無需再討論,綜上所述,當時,整數的最大值為.本題考查了導數在證明不等式中的應用,導數與函數單調性、極值、最值的關系和應用,構造函數法求最值,并判斷函數值法符號,綜合性強,屬于難題.18.(1);(2)【解析】
(1)通過求出的值,利用正弦定理求出即可得角;(2)根據求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.本題主要考查了正弦定理和余弦定理在解三角形中的應用,考查三角函數知識的運用,屬于中檔題.19.1【解析】
整理已知利用復數的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1本題考查復數的除法運算與求模,屬于基礎題.20.(1)選取方案二更合適;(2)【解析】
(1)可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據,而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系,從而可得結論;(2)求得購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書,由此能求出購買電子書人數多于只購買紙質版本人數的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統紙媒受到了強烈的沖擊,從表格中的數據中可以看出從2014年開始,廣告收入呈現逐年下降的趨勢,可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據.②相關系數越接近1,線性相關性越強,因為根據9年的數據得到的相關系數的絕對值,我們沒有理由認為與具有線性相關關系;而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系.(2)因為在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,所以從該網站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書.概率為:.本題主要考查最優方案的選擇,考查了相關關系的定義以及互斥事件的概率與獨立事件概率公式的應用,考查閱讀能力與運算求解能力,屬于中檔題.與實際應用相結合的題型也是高考命題的動向,這類問題的特點是通過現實生活的事例考查書本知識,解決這類問題的關鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉化為數學模型進行解答.21.(Ⅰ)函數在區間上有兩個零點.見解析(Ⅱ)見解析【解析】
(Ⅰ)根據題意,,利用導函數研究函數的單調性,分類討論在區間的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深圳平面口罩項目商業計劃書范文
- 中國普魯蘭糖項目投資計劃書
- 個人加工合同協議書范本
- 消毒在豬病防控中的應用
- 2025年金屬鋼管制品項目投資可行性研究分析報告
- 工廠木工勞務合同協議書
- 建筑項目計劃書模板5
- 年產1萬噸注塑等塑料制品生產項目項目建議書
- 送餐合同協議書范文
- 借款合同分期協議書
- 深圳市城市規劃標準與準則2024版
- 2025年高考化學三輪沖刺:實驗綜合大題 刷題練習題(含答案解析)
- 《低空經濟及其產業發展-把握機會、布局未來》課件
- 腸梗阻課件教學課件
- 我們的節日-端午
- 四川省2024年中考物理試題13套附解析答案
- 第1單元班級衛生大掃除(教案)-三年級上冊勞動魯科版
- 2024年新疆喀什公務員錄用考試《行測》真題及答案
- 蒙醫藥基礎知識課件
- 零基預算改革解讀
- 肱骨外上髁炎的健康宣教
評論
0/150
提交評論