




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
齊齊哈爾市重點中學2025屆高三摸底聯考數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.22.已知是函數的極大值點,則的取值范圍是A. B.C. D.3.已知函數,對任意的,,當時,,則下列判斷正確的是()A. B.函數在上遞增C.函數的一條對稱軸是 D.函數的一個對稱中心是4.已知變量,滿足不等式組,則的最小值為()A. B. C. D.5.若向量,,則與共線的向量可以是()A. B. C. D.6.已知中內角所對應的邊依次為,若,則的面積為()A. B. C. D.7.已知集合,則()A. B. C. D.8.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.偶函數關于點對稱,當時,,求()A. B. C. D.10.雙曲線的漸近線方程是()A. B. C. D.11.已知等差數列{an},則“a2>a1”是“數列{an}為單調遞增數列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件12.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.14.變量滿足約束條件,則目標函數的最大值是____.15.設滿足約束條件,則的取值范圍為__________.16.設為等比數列的前項和,若,且,,成等差數列,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統計了2019年1月份所有用戶的日平均步數,規定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:運動達人非運動達人總計男3560女26總計100(1)(i)將列聯表補充完整;(ii)據此列聯表判斷,能否有的把握認為“日平均走步數和性別是否有關”?(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數的分布列及期望.附:18.(12分)已知函數(1)當時,求不等式的解集;(2)若函數的值域為A,且,求a的取值范圍.19.(12分)設函數,(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.20.(12分)車工劉師傅利用數控車床為某公司加工一種高科技易損零件,對之前加工的100個零件的加工時間進行統計,結果如下:加工1個零件用時(分鐘)20253035頻數(個)15304015以加工這100個零件用時的頻率代替概率.(1)求的分布列與數學期望;(2)劉師傅準備給幾個徒弟做一個加工該零件的講座,用時40分鐘,另外他打算在講座前、講座后各加工1個該零件作示范.求劉師傅講座及加工2個零件作示范的總時間不超過100分鐘的概率.21.(12分)已知函數的圖象向左平移后與函數圖象重合.(1)求和的值;(2)若函數,求的單調遞增區間及圖象的對稱軸方程.22.(10分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大?。?/p>
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B利用的關系求雙曲線的離心率,是基礎題.2.B【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴,即在上單調遞增,時,,,且,∴,即在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,所以,這與是函數的極大值點矛盾.綜上,.故選B.方法二:依據極值的定義,要使是函數的極大值點,須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得,故選B.3.D【解析】
利用輔助角公式將正弦函數化簡,然后通過題目已知條件求出函數的周期,從而得到,即可求出解析式,然后利用函數的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數,對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D本題考查了簡單三角恒等變換以及三角函數的性質,熟記性質是解題的關鍵,屬于基礎題.4.B【解析】
先根據約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應圖形如下:可知點,,在處有最小值,最小值為.故選:B.本題主要考查簡單的線性規劃,運用了數形結合的方法,屬于基礎題.5.B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.6.A【解析】
由余弦定理可得,結合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.7.A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:本題考查集合的交運算,屬于基礎題.8.C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.9.D【解析】
推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.10.C【解析】
根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.11.C【解析】試題分析:根據充分條件和必要條件的定義進行判斷即可.解:在等差數列{an}中,若a2>a1,則d>0,即數列{an}為單調遞增數列,若數列{an}為單調遞增數列,則a2>a1,成立,即“a2>a1”是“數列{an}為單調遞增數列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.12.D【解析】
計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
寫出所在直線方程,求出圓心到直線的距離,結合題意可得關于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.本題考查直線和圓的位置關系以及點到直線的距離公式應用,考查數形結合的解題思想方法,屬于中檔題.14.5【解析】
分析:畫出可行域,平移直線,當直線經過時,可得有最大值.詳解:畫出束條件表示的可行性,如圖,由可得,可得,目標函數變形為,平移直線,當直線經過時,可得有最大值,故答案為.點睛:本題主要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的定點就是最優解);(3)將最優解坐標代入目標函數求出最值.15.【解析】
由題意畫出可行域,轉化目標函數為,數形結合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉化目標函數為,通過平移直線,數形結合可知:當直線過點A時,直線截距最大,z最?。划斨本€過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.本題考查了簡單的線性規劃,考查了數形結合思想,屬于基礎題.16..【解析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(i)填表見解析(ii)沒有的把握認為“日平均走步數和性別是否有關”(2)詳見解析【解析】
(1)(i)由已給數據可完成列聯表,(ii)計算出后可得;(2)由列聯表知從運動達人中抽取1個用戶為女用戶的概率為,的取值為,,由二項分布概率公式計算出各概率得分布列,由期望公式計算期望.【詳解】解(1)(i)運動達人非運動達人總計男352560女142640總計4951100(ii)由列聯表得所以沒有的把握認為“日平均走步數和性別是否有關”(2)由列聯表知從運動達人中抽取1個用戶為女用戶的概率為,.易知所以的分布列為0123.本題考查列聯表,考查獨立性檢驗,考查隨機變量的概率分布列和期望.屬于中檔題.本題難點在于認識到.18.(1)或(2)【解析】
(1)分類討論去絕對值即可;(2)根據條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關于a的不等式,然后求出a的取值范圍.【詳解】(1)當a=﹣1時,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當x≤﹣1時,原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當時,原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時不等式無解;當時,原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當a<﹣3時,,∴函數g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當a≥﹣3時,,∴函數g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).本題考查了絕對值不等式的解法和利用集合間的關于求參數的取值范圍,考查了轉化思想和分類討論思想,屬于中檔題.19.(1)或;(2)證明見解析【解析】
(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據,當且僅當時,等式成立.本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.20.(1)分布列見解析,;(2)0.8575【解析】
(1)根據題目所給數據求得分布列,并計算出數學期望.(2)根據對立事件概率計算公式、相互獨立事件概率計算公式,計算出劉師傅講座及加工個零件作示范的總時間不超過分鐘的概率.【詳解】(1)的分布列如下:202530350.150.300.400.15.(2)設,分別表示講座前、講座后加工該零件所需時間,事件表示“留師傅講座及加工兩個零件示范的總時間不超過100分鐘”,則.本小題主要考查隨機變量分布列和數學期望的求法,考查對立事件概率計算,考查相互獨立事件概率計算,屬于中檔題.21.(1),;(2),,.【解析】
(1)直接利用同角三角函數關系式的變換的應用求出結果.(2)首先把函數的關系式變形成正弦型函數,進一步利用正弦型函數的性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國防剝落涂料行業供需趨勢及投資風險研究報告
- 固定與彈性生產計劃的優劣分析
- 2025-2030中國長期護理和療養院信息系統行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鍍鋅板行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 2025-2030中國鍋爐汽輪發電機設備行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鏈傳動系統鏈輪行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鋁阻隔層板(ABL)管行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鐵路設備行業市場深度發展趨勢與前景展望戰略研究報告
- 2025-2030中國鎢鐵行業供需態勢與發展經營形勢分析研究報告
- 2025-2030中國鋼化玻璃保鮮盒行業市場發展分析及競爭格局與投資前景研究報告
- 湖北2023年中國郵政儲蓄銀行湖北分行春季校園招聘(第一批)考試參考題庫含答案詳解
- T-DLSHXH 002-2023 工業干冰標準規范
- 典型示功圖應用與分析
- 出凝血完整版終版
- LY/T 2006-2012荒漠生態系統服務評估規范
- GB/T 31190-2014實驗室廢棄化學品收集技術規范
- 《地鐵突發大客流應急管理》論文11000字
- 第五章-項目時間管理課件
- 導游人員管理法律制度課件
- 木箱檢驗作業指導書
- 初中級檔案職稱《檔案事業概論》檔案事業題庫一
評論
0/150
提交評論