




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省東臺市第五聯盟達標名校2024屆中考數學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將函數的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是()A. B. C. D.2.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.3.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.4.一個多邊形的邊數由原來的3增加到n時(n>3,且n為正整數),它的外角和()A.增加(n﹣2)×180° B.減小(n﹣2)×180°C.增加(n﹣1)×180° D.沒有改變5.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.6.拋物線經過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如圖1,在矩形ABCD中,動點E從A出發,沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y,如圖2所表示的是y與x的函數關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對8.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B.中秋節的晚上一定能看到月亮C.打開電視機,正在播少兒節目D.小紅今年14歲,她一定是初中學生9.已知關于x的不等式組至少有兩個整數解,且存在以3,a,7為邊的三角形,則a的整數解有()A.4個 B.5個 C.6個 D.7個10.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點為(4,6),則下列說法錯誤的是()A.b2>4ac B.ax2+bx+c≤6C.若點(2,m)(5,n)在拋物線上,則m>n D.8a+b=011.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個12.若二元一次方程組的解為則的值為()A.1 B.3 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:a3b+2a2b2+ab3=_____.14.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數y=的圖象上,則k的值為________.15.計算:的結果是_____.16.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長為半徑畫弧,兩弧交于F、G作直線FG,分別交AB,AC于點D、E,若AC的長為4,則BC的長為_____.17.如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).18.已知,(),請用計算器計算當時,、的若干個值,并由此歸納出當時,、間的大小關系為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機抽取該校九年級若干名男生,調查他們的跳繩成績(次/分),按成績分成,,,,五個等級.將所得數據繪制成如下統計圖.根據圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數分布直方圖(1)本次調查中,男生的跳繩成績的中位數在________等級;(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是等級的人數.20.(6分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質完全相同的小球,其中甲袋中的小球上分別標有數字1,1,2;乙袋中的小球上分別標有數字﹣1,﹣2,1.現從甲袋中任意摸出一個小球,記其標有的數字為x,再從乙袋中任意摸出一個小球,記其標有的數字為y,以此確定點M的坐標(x,y).請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標;求點M(x,y)在函數y=﹣2x21.(6分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.22.(8分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標;(2)動點E從原點O出發,沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時,F的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數關系式(3)若點M在直線OP上,在平面內是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標。若不存在請說明理由。23.(8分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如圖所示的尚不完整的統計圖:根據以上統計圖,解答下列問題:本次接受調查的市民共有人;扇形統計圖中,扇形B的圓心角度數是;請補全條形統計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數.24.(10分)數學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數式;若x是方程1x=﹣x﹣9的解,求紙片①上代數式的值.25.(10分)如圖,某數學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發,沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內,AB⊥BC,AB//DE.求旗桿AB的高度.(參考數據:sin37°≈,cos37°≈,tan37°≈.計算結果保留根號)26.(12分)(問題發現)(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.27.(12分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據平移規律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數的圖是將函數y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數圖象變換以及矩形的面積求法等知識,根據已知得出AA′的長度是解題關鍵.2、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖3、C【解析】
根據主視圖的定義判斷即可.【詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【點睛】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關鍵.4、D【解析】
根據多邊形的外角和等于360°,與邊數無關即可解答.【詳解】∵多邊形的外角和等于360°,與邊數無關,∴一個多邊形的邊數由3增加到n時,其外角度數的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關鍵.5、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質;2.含30度角的直角三角形;3.弧長的計算.6、A【解析】
根據二次函數圖象所在的象限大致畫出圖形,由此即可得出結論.【詳解】∵二次函數圖象只經過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數的性質以及二次函數的圖象,大致畫出函數圖象,利用數形結合解決問題是解題的關鍵.7、A【解析】
由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據相似三角形的性質可得y=﹣,根據二次函數的性質可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數的應用,相似三角形的判定與性質,綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數的性質以及相似三角形的判定與性質是解題的關鍵.8、A【解析】
必然事件就是一定發生的事件,即發生的概率是1的事件,依據定義即可求解.【詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;
一定發生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【點睛】該題考查的是對必然事件的概念的理解;必然事件就是一定發生的事件.9、A【解析】
依據不等式組至少有兩個整數解,即可得到a>5,再根據存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.10、C【解析】觀察可得,拋物線與x軸有兩個交點,可得,即,選項A正確;拋物線開口向下且頂點為(4,6)可得拋物線的最大值為6,即,選項B正確;由題意可知拋物線的對稱軸為x=4,因為4-2=2,5-4=1,且1<2,所以可得m<n,選項C錯誤;因對稱軸,即可得8a+b=0,選項D正確,故選C.點睛:本題主要考查了二次函數y=ax2+bx+c圖象與系數的關系,解決本題的關鍵是從圖象中獲取信息,利用數形結合思想解決問題,本題難度適中.11、C【解析】
試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質;2、全等三角形的判定與性質;3、角平分線的性質;4、等腰三角形的判定與性質12、D【解析】
先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因為所以.故選D.【點睛】本題考查二元一次方程組的解,解題的關鍵是觀察兩方程的系數,從而求出a-b的值,本題屬于基礎題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、ab(a+b)1.【解析】
a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.故答案為ab(a+b)1.【點睛】此題主要考查了提取公因式法以及公式法分解因式,熟練應用乘法公式是解題關鍵.14、-6【解析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據菱形的面積等于對角線乘積的一半得:,解得15、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減16、【解析】
連接CD在根據垂直平分線的性質可得到△ADC為等腰直角三角形,結合已知的即可得到∠BCD的大小,然后就可以解答出此題【詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【點睛】此題主要考查垂直平分線的性質,解題關鍵在于連接CD利用垂直平分線的性質證明△ADC為等腰直角三角形17、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數的幾何意義得出各線段的比例關系,從而得出答案.18、【解析】試題分析:當n=3時,A=≈0.3178,B=1,A<B;當n=4時,A=≈0.2679,B=≈0.4142,A<B;當n=5時,A=≈0.2631,B=≈0.3178,A<B;當n=6時,A=≈0.2134,B=≈0.2679,A<B;……以此類推,隨著n的增大,a在不斷變小,而b的變化比a慢兩個數,所以可知當n≥3時,A、B的關系始終是A<B.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)C;(2)100【解析】
(1)根據中位數的定義即可作出判斷;(2)先算出樣本中C等級的百分比,再用總數乘以400即可.【詳解】解:(1)由直方圖中可知數據總數為40個,第20,21個數據的平均數為本組數據的中位數,第20,21個數據的等級都是C等級,故本次調查中,男生的跳繩成績的中位數在C等級;故答案為C.(2)400=100(人)答:估計該校九年級男生跳繩成績是等級的人數有100人.【點睛】本題考查了中位數的求法和用樣本數估計總體數據,理解相關知識是解題的關鍵.20、(1)樹狀圖見解析,則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結果;(2)由點M(x,y)在函數y=﹣2x試題解析:(1)樹狀圖如下圖:則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵點M(x,y)在函數y=﹣2x∴點M(x,y)在函數y=﹣2x的圖象上的概率為:2考點:列表法或樹狀圖法求概率.21、證明見解析.【解析】
(1)根據旋轉的性質可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據垂直可得出∠DBE=∠CBE=30°,繼而可根據SAS證明△BDE≌△BCE;(2)根據(1)以及旋轉的性質可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內繞點B旋轉60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉的性質;全等三角形的判定與性質;菱形的判定.22、(1);(2);(3)【解析】
(1)聯立兩直線解析式,求出交點P坐標即可;(2)由F坐標確定出OF的長,得到E的橫坐標為a,代入直線OP解析式表示出E縱坐標,即為EF的長,分兩種情況考慮:當時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數關系式;當時,重合部分為直角梯形面積,求出S與a函數關系式.(3)根據(1)所求,先求得A點坐標,再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯立得:,解得:;∴P的坐標為;(2)分兩種情況考慮:當時,由F坐標為(a,0),得到OF=a,把E橫坐標為a,代入得:即此時當時,重合的面積就是梯形面積,F點的橫坐標為a,所以E點縱坐標為M點橫坐標為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標為(4,0)則AP=,則PM=2又∵OP=∴點P向左平移3個單位在向下平移可以得到M1點P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點,且坐標是【點睛】本題考查一次函數綜合題、勾股定理以及逆定理、矩形的性質、全等三角形的判定和性質、解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.23、(1)1;(2)43.2°;(3)條形統計圖如圖所示:見解析;(4)估計乘公交車上班的人數為6萬人.【解析】
(1)根據D組人數以及百分比計算即可.(2)根據圓心角度數=360°×百分比計算即可.(3)求出A,C兩組人數畫出條形圖即可.(4)利用樣本估計總體的思想解決問題即可.【詳解】(1)本次接受調查的市民共有:50÷25%=1(人),故答案為1.(2)扇形統計圖中,扇形B的圓心角度數=360°×=43.2°;故答案為:43.2°(3)C組人數=1×40%=80(人),A組人數=1﹣24﹣80﹣50﹣16=30(人).條形統計圖如圖所示:(4)15×40%=6(萬人).答:估計乘公交車上班的人數為6萬人.【點睛】本題考查條形統計圖,扇形統計圖,樣本估計總體等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.24、(1)7x1+4x+4;(1)55.【解析】
(1)根據整式加法的運算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數式即可求解.【詳解】解:(1)紙片①上的代數式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數式的值為55.【點睛】本題考查了整式加減混合運算,解一元一次方程,代數式求值,在解題的過程中要牢記并靈活運用整式加減混合運算的法則.特別是對于含括號的運算,在去括號時,一定要注意符號的變化.25、3+3.5【解析】
延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應用﹣仰角俯角問題;2、解直角三角形的應用﹣坡度坡角問題26、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】
(1)依據點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別依據旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60°,如圖所示:過B作BF⊥AD'于F,旋轉可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 圍手術期護理查房
- 2024年六安霍邱合高現代產業園投資有限公司招聘4人筆試參考題庫附帶答案詳解
- 汽配城汽車行業分析
- 人力資源服務協議合同書范例
- 縣黨建培訓課件
- 實驗室CNAS體系培訓
- 圓翳內障中醫護理方案
- 有關車貸的借款合同范例
- 項目資金抵押借款合同
- 老年清潔護理課件
- 中級銀行管理-2025中級銀行從業資格考試《銀行管理》點睛提分卷1
- 乳腺癌診治指南與規范(2024年版)解讀
- 酒店前臺培訓知識
- 統編版(2024)七年級下冊語文第三單元教案
- (一模)石家莊市2025年高三年級教學質量檢測(一)地理試卷(含答案)
- 數學-湖南省長郡二十校聯盟2025屆新高考教學教研聯盟高三第一次聯考(長郡二十校一聯)試題和答案
- 2025屆陜西省安康市高三下學期二模歷史考試
- 玄武巖礦行業市場發展及發展趨勢與投資戰略研究報告
- 土木工程論文范文
- 甲流及其檢測方法檢驗科
- GB/T 45159.3-2024機械振動與沖擊黏彈性材料動態力學性能的表征第3部分:懸臂剪切梁法
評論
0/150
提交評論