




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGEPAGE12021年人教版高中數學知識點2021年人教版高中數學知識點有哪些?數學早已深入到了生活中的點點滴滴,生活中到處都充滿著數學,一不小心就會出現錯誤,我們一定要學好數學,讓我們熱愛數學吧!一起來看看2021年人教版高中數學知識點,歡迎查閱!高中數學知識點向量:既有大小,又有方向的量.數量:只有大小,沒有方向的量.有向線段的三要素:起點、方向、長度.零向量:長度為的向量.單位向量:長度等于個單位的向量.相等向量:長度相等且方向相同的向量向量的運算加法運算AB+BC=AC,這種計算法則叫做向量加法的三角形法則。已知兩個從同一點O出發(fā)的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法滿足所有的加法運算定律。減法運算與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。數乘運算實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ0時,λa的方向和a的方向相同,當λlt;0時,λa的方向和a的方向相反,當λ=0時,λa=0。設λ、μ是實數,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。向量的加法運算、減法運算、數乘運算統稱線性運算。向量的數量積已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。a?b的幾何意義:數量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個向量的數量積等于它們對應坐標的乘積的和。高中數學公式大全乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤blt;=-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根與系數的關系X1+X2=-b/aX1_X2=c/a注:韋達定理判別式b2-4ac=0注:方程有兩個相等的實根b2-4ac0注:方程有兩個不等的實根b2-4aclt;0注:方程沒有實根,有共軛復數根三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些數列前n項和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱側面積S=c_h斜棱柱側面積S=c#39;_h正棱錐側面積S=1/2c_h#39;正棱臺側面積S=1/2(c+c#39;)h#39;圓臺側面積S=1/2(c+c#39;)l=pi(R+r)l球的表面積S=4pi_r2圓柱側面積S=c_h=2pi_h圓錐側面積S=1/2_c_l=pi_r_l弧長公式l=a_ra是圓心角的弧度數r0扇形面積公式s=1/2_l_r錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h斜棱柱體積V=S#39;L注:其中,S#39;是直截面面積,L是側棱長柱體體積公式V=s_h圓柱體V=pi_r2h高中數學知識點最新1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等于補之并。Cu(AUB)=(CuA)∩(CuB),并之補等于補之交。3、ax2+bx+clt;0的解集為x(0+c0的解集為x,cx2+bx+a0的解集為x或xlt;;ax2—bx+4、clt;0的解集為x,cx2—bx+a0的解集為-x或xlt;-。5、原命題與其逆否命題是等價命題。原命題的逆命題與原命題的否命題也是等價命題。6、函數是一種特殊的映射,函數與映射都可用:f:A→B表示。A表示原像,B表示像。當f:A→B表示函數時,A表示定義域,B大于或等于其值域范圍。只有一一映射的函數才具有反函數。7、原函數與反函數的單調性一致,且都為奇函數。偶函數和周期函數沒有反函數。若f(x)與g(x)關于點(a,b)對稱,則g(x)=2b-f(2a-x).8、若f(-x)=f(x),則f(x)為偶函數,若f(-x)=f(x),則f(x)為奇函數;偶函數關于y軸對稱,且對稱軸兩邊的單調性相反;奇函數關于原點對稱,且在整個定義域上的單調性一致。反之亦然。若奇函數在x=0處有意義,則f(0)=0。函數的單調性可用定義法和導數法求出。偶函數的導函數是奇函數,奇函數的導函數是偶函數。對于任意常數T(T≠0),在定義域范圍內,都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數,且f(x+kT)=f(x),k≠0.9、周期函數的特征性:①f(x+a)=-f(x),是T=2a的函數,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數,③若f(x)既x=a關對稱,又關于x=b對稱,則f(x)是T=2(b-a)的函數④若f(x+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數⑤f(x+a)=±,則f(x)是T=4(b-a)的函數10、復合函數的單調性滿足“同增異減”原理。定義域都是指函數中自變量的取值范圍。11、抽象函數主要有f(xy)=f(x)+f(y)(對數型),f(x+y)=f(x)?f(y)(指數型),f(x+y)=f(x)+f(y)(直線型)。解此類抽象函數比較實用的方法是特殊值法和周期法。12、指數函數圖像的規(guī)律是:底數按逆時針增大。對數函數與之相反.13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數方程或不等式時,常借助于換元法,應特別注意換元后新變元的取值范圍。14、log10N=lgN;logeN=lnN(e=2.718???);對數的性質:如果a0,a≠0,M0N0,那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.15、函數圖像的變換:(1)水平平移:y=f(x±a)(a0)的圖像可由y=f(x)向左或向右平移a個單位得到;(2)豎直平移:y=f(x)±b(b0)圖像,可由y=f(x)向上或向下平移b個單位得到;(3)對稱:若對于定義域內的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關于直線x=m對稱;y=f(x)關于(a,b)對稱的函數為y!=2b—f(2a—x).(4),學習計劃;翻折:①y=|f(x)|是將y=f(x)位于x軸下方的部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y軸的右方而成的圖像。(5)有關結論:①若f(a+x)=f(b—x),在x為一切實數上成立,則y=f(x)的圖像關于x=對稱。②函數y=f(a+x)與函數y=f(b—x)的圖像有關于直線x=對稱。15、等差數列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+16、若n+m=p+q,則am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d為公差的等差數列。an是等差數列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數列,則可設前n項和為sn=an2+bn(注:沒有常數項),用方程的思想求解a,b。在等差數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等差數列。17、等比數列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;sk,s2k—k,s3k—2k也是等比數列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數列。在等比數列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 納稅人信息管理的重要性試題及答案
- 激光技術工程師考試準備策略試題及答案
- 靈活運用不同學習資源備戰(zhàn)育嬰師考試試題及答案
- 紡織生產的管理優(yōu)化方法試題及答案
- 學好衛(wèi)生管理考試課程要點試題及答案
- 有效控制焦慮心理迎接育嬰師考試試題及答案
- 文化產品的生命周期管理方法試題及答案
- 尋求國際法試題及答案
- 持續(xù)進步的專利考試試題與答案
- 搞笑測試題及答案
- 耳穴壓豆治療便秘
- 2023年長江產業(yè)投資集團有限公司招聘考試真題
- 中華人民共和國安全生產法知識培訓
- 機械CAD、CAM-形考任務二-國開-參考資料
- 腫瘤中醫(yī)治療及調養(yǎng)
- 婦產科課件-早產臨床防治指南(2024)解讀
- 施工現場機械設備管理規(guī)定
- 高質量數字化轉型技術解決方案集(2024上半年度)
- 住房城鄉(xiāng)建設科學技術計劃項目科研開發(fā)類申報書
- 廣東省佛山市S6高質量發(fā)展聯盟2023-2024學年高一下學期4月期中考試數學
- 道路旅客運輸企業(yè)雙重預防機制建設指導手冊
評論
0/150
提交評論