2025年江西省四校協作體高三2月開學檢測試題數學試題含解析_第1頁
2025年江西省四校協作體高三2月開學檢測試題數學試題含解析_第2頁
2025年江西省四校協作體高三2月開學檢測試題數學試題含解析_第3頁
2025年江西省四校協作體高三2月開學檢測試題數學試題含解析_第4頁
2025年江西省四校協作體高三2月開學檢測試題數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年江西省四校協作體高三2月開學檢測試題數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則()A. B. C.1 D.22.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.3.如圖,在中,,且,則()A.1 B. C. D.4.已知過點且與曲線相切的直線的條數有().A.0 B.1 C.2 D.35.函數()的圖像可以是()A. B.C. D.6.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.7.設函數的定義域為,命題:,的否定是()A., B.,C., D.,8.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b9.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.10.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.11.某個小區住戶共200戶,為調查小區居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.14012.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.14.如圖所示的流程圖中,輸出的值為______.15.若向量與向量垂直,則______.16.已知點是直線上的一點,將直線繞點逆時針方向旋轉角,所得直線方程是,若將它繼續旋轉角,所得直線方程是,則直線的方程是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.18.(12分)已知函數.(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.19.(12分)對于非負整數集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數.(1)給出所有的元素均小于的好集合.(給出結論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數倍.20.(12分)管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.21.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.22.(10分)如圖,設橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標準方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A本小題主要考查向量垂直的坐標表示,屬于基礎題.2.A【解析】

如圖設平面,球心在上,根據正四面體的性質可得,根據平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.3.C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.4.C【解析】

設切點為,則,由于直線經過點,可得切線的斜率,再根據導數的幾何意義求出曲線在點處的切線斜率,建立關于的方程,從而可求方程.【詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.本題主要考查了利用導數求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數的幾何意義求解切線的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5.B【解析】

根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.6.C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.7.D【解析】

根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.8.B【解析】

先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.9.C【解析】

利用誘導公式以及二倍角公式,將化簡為關于的形式,結合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.本題考查三角函數中的誘導公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結果;(2)將變形為,利用的值求出結果.10.C【解析】

利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.11.C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區內用水量超過15立方米的住戶戶數為,故選C12.D【解析】

直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D本題考查的知識要點:三角函數關系式的恒等變變換,同角三角函數關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.14.4【解析】

根據流程圖依次運行直到,結束循環,輸出n,得出結果.【詳解】由題:,,,結束循環,輸出.故答案為:4此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環結構和判斷框語句.15.0【解析】

直接根據向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.本題考查了根據向量垂直求參數,意在考查學生的計算能力.16.【解析】

求出點坐標,由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉角,再繼續旋轉角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關系,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數可得直線的直角坐標系方程,由可得曲線的直角坐標方程;(2)將(為參數)代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數)代入曲線的方程得:.所以.所以.18.(1)(2)【解析】

(1))當時,將函數寫成分段函數,即可求得不等式的解集.(2)根據原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎題.19.(1),,,.(2);證明見解析.(3)證明見解析.【解析】

(1)根據好集合的定義列舉即可得到結果;(2)設,其中,由知;由可知或,分別討論兩種情況可的結果;(3)記,則,設,由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設,其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數.(3)記,則,首先,,設,其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時,故中存在元素,使得中所有元素均為的整數倍.本題考查集合中的新定義問題的求解,關鍵是明確已知中所給的新定義的具體要求,根據集合元素的要求進行推理說明,對于學生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.20.(1);(2).【解析】

(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導數求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設,則,令,則,即.設,且,則當時,,所以單調遞減;當時,,所以單調遞增,所以當時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.本題考查導數在實際問題中的應用,考查學生的數學運算求解能力,是一道中檔題.21.(I);(II).【解析】

試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.22.(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】

(Ⅰ)由已知求出拋物線的焦點坐標即得橢圓中的,再由離心率可求得,從而得值,得標準方程;(Ⅱ)設直線方程為,設,把直線方程代入拋物線方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論