




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省泰州市姜堰區(qū)實驗初級中學2024年中考數(shù)學全真模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.32.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.正五邊形B.平行四邊形C.矩形D.等邊三角形3.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°4.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關系式為().A. B. C. D.5.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.86.如圖,∠ACB=90°,D為AB的中點,連接DC并延長到E,使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若AB=6,則BF的長為()A.6 B.7 C.8 D.107.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數(shù)法表示應為()A. B. C. D.8.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm9.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.10.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.用一條長60cm的繩子圍成一個面積為216的矩形.設矩形的一邊長為xcm,則可列方程為______.12.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.13.已知點P(a,b)在反比例函數(shù)y=的圖象上,則ab=_____.14.如圖,將矩形ABCD繞點C沿順時針方向旋轉90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.15.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為_____.16.用不等號“>”或“<”連接:sin50°_____cos50°.17.使得關于x的分式方程的解為負整數(shù),且使得關于x的不等式組有且僅有5個整數(shù)解的所有k的和為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點.(1)若a=1,求反比例函數(shù)的解析式及b的值;(2)在(1)的條件下,根據(jù)圖象直接回答:當x取何值時,反比例函數(shù)大于一次函數(shù)的值?(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.19.(5分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,∠EAD=45°,將△ADC繞點A順時針旋轉90°,得到△AFB,連接EF.求證:EF=ED;若AB=2,CD=1,求FE的長.20.(8分)反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點A(1,2k﹣1).求反比例函數(shù)的解析式;若一次函數(shù)與x軸交于點B,且△AOB的面積為3,求一次函數(shù)的解析式.21.(10分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.22.(10分)如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點,延長AM到點D,AE=AD,∠EAD=90°,CE交AB于點F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度數(shù);(3)用等式表示線段CD和CE之間的數(shù)量關系,并證明.23.(12分)解方程:=1.24.(14分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標號相同;兩次取出的小球標號的和等于4.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設a=x,則c=3x,b==2x.即tanA==.故選B.【點睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關鍵.2、C【解析】分析:根據(jù)中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.詳解:A.正五邊形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.B.平行四邊形,是中心對稱圖形,不是軸對稱圖形,故本選項錯誤.C.矩形,既是中心對稱圖形又是軸對稱圖形,故本選項正確.D.等邊三角形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.點睛:本題考查了對中心對稱圖形和軸對稱圖形的判斷,我們要熟練掌握一些常見圖形屬于哪一類圖形,這樣在實際解題時,可以加快解題速度,也可以提高正確率.3、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質,熟知兩直線平行,同位角相等是解答此題的關鍵.4、A【解析】
根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.5、C【解析】
∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.6、C【解析】∵∠ACB=90°,D為AB的中點,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,點D是AB的中點,∴ED是△AFB的中位線,∴BF=2ED=3.故選C.7、C【解析】分析:在實際生活中,許多比較大的數(shù),我們習慣上都用科學記數(shù)法表示,使書寫、計算簡便.解答:解:根據(jù)題意:2500000=2.5×1.故選C.8、C【解析】
圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.9、C【解析】
根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應邊應該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應關系是關鍵.10、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)周長表達出矩形的另一邊,再根據(jù)矩形的面積公式即可列出方程.【詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【點睛】本題考查了一元二次方程與實際問題,解題的關鍵是找出等量關系.12、【解析】
過點D作DF⊥BC于點F,由菱形的性質可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質,勾股定理,求出DE的長度是本題的關鍵.13、2【解析】【分析】接把點P(a,b)代入反比例函數(shù)y=即可得出結論.【詳解】∵點P(a,b)在反比例函數(shù)y=的圖象上,∴b=,∴ab=2,故答案為:2.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.14、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為15、60°【解析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°16、>【解析】試題解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案為>.點睛:當角度在0°~90°間變化時,①正弦值隨著角度的增大(或減小)而增大(或減小);②余弦值隨著角度的增大(或減小)而減小(或增大);③正切值隨著角度的增大(或減小)而增大(或減小).17、12.1【解析】
依據(jù)分式方程=1的解為負整數(shù),即可得到k>,k≠1,再根據(jù)不等式組有1個整數(shù)解,即可得到0≤k<4,進而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,
∵分式方程=1的解為負整數(shù),
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式組,可得,
∵不等式組有1個整數(shù)解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值為1.1或2或2.1或3或3.1,
∴符合題意的所有k的和為12.1,
故答案為12.1.【點睛】本題考查了解一元一次不等式組、分式方程的解,解題時注意分式方程中的解要滿足分母不為0的情況.三、解答題(共7小題,滿分69分)18、(1)反比例函數(shù)的解析式為y=,b的值為﹣1;(1)當x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)一次函數(shù)的解析式為y=x+1【解析】
(1)由題意得到A(1,4),設反比例函數(shù)的解析式為y=(k≠0),根據(jù)待定系數(shù)法即可得到反比例函數(shù)解析式為y=;再由點B(﹣4,b)在反比例函數(shù)的圖象上,得到b=﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),結合圖象即可得到答案;(3)設一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,因為A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,得到,解得p=8,a=1,b=﹣1,則A(1,4),B(﹣4,﹣1),由點A、點B在一次函數(shù)y=mx+n圖象上,得到,解得,即可得到答案.【詳解】(1)若a=1,則A(1,4),設反比例函數(shù)的解析式為y=(k≠0),∵點A在反比例函數(shù)的圖象上,∴4=,解得k=4,∴反比例函數(shù)解析式為y=;∵點B(﹣4,b)在反比例函數(shù)的圖象上,∴b==﹣1,即反比例函數(shù)的解析式為y=,b的值為﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),根據(jù)圖象:當x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)設一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,∵A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,∴,即,①+②得4a﹣4b=1p,∵a﹣b=4,∴16=1p,解得p=8,把p=8代入①得4a=8,代入②得﹣4b=8,解得a=1,b=﹣1,∴A(1,4),B(﹣4,﹣1),∵點A、點B在一次函數(shù)y=mx+n圖象上,∴解得∴一次函數(shù)的解析式為y=x+1.【點睛】本題考查一次函數(shù)與反比例函數(shù),解題的關鍵是待定系數(shù)法求函數(shù)解析式.19、(1)見解析;(2)EF=.【解析】
(1)由旋轉的性質可求∠FAE=∠DAE=45°,即可證△AEF≌△AED,可得EF=ED;(2)由旋轉的性質可證∠FBE=90°,利用勾股定理和方程的思想可求EF的長.【詳解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵將△ADC繞點A順時針旋轉90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=【點睛】本題考查了旋轉的性質,等腰直角三角形的性質,全等三角形的判定和性質,勾股定理等知識,利用方程的思想解決問題是本題的關鍵.20、(1)y=;(2)y=﹣或y=【解析】試題分析:(1)把A(1,2k-1)代入y=即可求得結果;
(2)根據(jù)三角形的面積等于3,求得點B的坐標,代入一次函數(shù)y=mx+b即可得到結果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數(shù)的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=﹣.所以符合條件的一次函數(shù)解析式為:y=﹣或y=x+.21、(1);(2)與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解析】
利用二次函數(shù)圖象上點的坐標特征可得出點A、B的坐標,結合即可得出關于a的一元一次方程,解之即可得出結論;由點A、B的坐標可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結合即可得出S關于x的函數(shù)關系式,再利用二次函數(shù)的性質即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結論;當時,由點B的縱坐標可得出點E的縱坐標為4,結合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結論綜上即可得出結論.【詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當時,S取最大值,最大值為18,此時點E的坐標為,與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設點D的坐標為,則點E的坐標為,,當時,,,,為等腰直角三角形.,即,解得:舍去,,點D的坐標為;當時,點E的縱坐標為4,,解得:,舍去,點D的坐標為.綜上所述:存在點D,使得和相似,此時點D的坐標為或.故答案為:(1);(2)與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、一次函數(shù)圖象上點的坐標特征、三角形的面積、二次函數(shù)的性質、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關鍵是:利用二次函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2026學年黃石市陽新縣三年級數(shù)學第一學期期末學業(yè)水平測試試題含解析
- 2025-2026學年安徽省阜陽市三上數(shù)學期末模擬試題含解析
- 常見皮膚病的識別與管理的試題及答案
- 2025年主管護師考試新挑戰(zhàn)試題及答案
- 行政管理情境分析試題及答案
- 醫(yī)院環(huán)境與護理舒適度試題及答案
- 執(zhí)業(yè)護士職業(yè)責任與義務考題試題及答案
- 主管護師考試心理調(diào)適試題及答案
- 行政管理學科語文探索試題及答案
- 常見手術護理試題及答案
- 高中地理人教版高中必修1第二章 地球上的大氣大氣的受熱過程教學設計
- GB∕T 31030-2014 機場旅客擺渡車
- 尾礦庫基礎知識最全PPT資料課件
- 山東省安全生產(chǎn)條例題庫200題含答案
- 《畢業(yè)設計--年產(chǎn)4000噸甲胺精餾工段的工藝初步設計 》
- 關門梁引水電站壓力管道設計說明
- dgt801系列數(shù)字式發(fā)電機變壓器組保護裝置調(diào)試大綱
- 關于建立涉農(nóng)貸款專項統(tǒng)計制的通知銀發(fā)號
- 300B電子管技術參數(shù)
- 基于PLC的數(shù)控車床電氣控制系統(tǒng)設計畢業(yè)論文_(2)[1]
- 古典概型 教學設計
評論
0/150
提交評論