測繪工程專業英語課文翻譯資料_第1頁
測繪工程專業英語課文翻譯資料_第2頁
測繪工程專業英語課文翻譯資料_第3頁
測繪工程專業英語課文翻譯資料_第4頁
測繪工程專業英語課文翻譯資料_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Unit6MethodsofElevationDetermination(高程測量方法)Anelevationisaverticaldistanceaboveorbelowareferencedatum.(高程是高于或低于一個參考基準的一個垂直距離。)Althoughverticaldistancecanbereferencedtoanydatum,insurveying,thereferencedatumthatisuniversallyemployedisthatofmeansealevel(MSL).(雖然垂直距離可以參考任何一個基準,但是在測量上,這個參考基準一般使用的是平均海平面(MSL))MSLisassignedaverticalvalue(elevation)of0.000ftor0.000m.(MSL被賦予一個0.000英尺或0.000米的高程)Allotherpointsontheearthcanbedescribedbytheelevationsaboveorbelowzero.(地球上所有其它點可以用高于或低于0的高程來描述)Permanentpointswhoseelevationshavebeenpreciselydetermined(benchmarks)areavailableinmostareasforsurveyuse.(高程精確測出的永久點(水準點)被用于大多數區域的測量工作)InChina,7yearsofobservationsattidalstationsinQingdaofrom1950to1956werereducedandadjustedtoprovidetheHuanghaiverticaldatumof1956.(在中國,利用青島驗潮站從1950年到1956年7年的觀測數據處理和平差,建立了56黃海高程系統)Inthe1987,thisdatumwasfurtherrefinedtoreflectlongperiodicaloceantidechangetoprovideanewnationalverticaldatumof1985,accordingtotheobservationsattidalstationsfrom1952to1979.(1987年,在依照了驗潮站1952到1979年的觀測資料后,這個基準被進一步精確——反映長時期海潮變化的85國家高程基準建立起來。)Although,strictlyspeaking,thenationalverticaldatummaynotpreciselyagreewiththeMSLatspecificpointsontheearth’ssurface,thetermMSLisgenerallyusedtodescribethedatum.(雖然,嚴格說來,國家高程基準在特殊的點上與MSL并不恰好吻合,術語MSL一般還是用來描述它)MSLisassignedaverticalvalue(elevation)of0.000ftor0.000m.(MSL高程的賦值為0.000英尺或米)Differenceinelevationmaybemeasuredbythefollowingmethods:(JamesM.AndersonandEdwardM.Mikhail.1998)(高程的差異可以由下列方法測得(詹姆斯.安德森和愛德華.)1.Directorspiritleveling,bymeasuringverticaldistancesdirectly.(水準測量,直接測得垂直距離)Directlevelingismostprecisemethodofdeterminingelevationsandtheonecommonlyused.(水準測量是高程測量方法中精度最高、使用最普遍的方法)2.Indirectortrigonometricleveling,bymeasuringverticalanglesandhorizontalorslopedistances.(三角高程測量,利用測量豎直角和水平或斜距來測高程)3.Stadialeveling,inwhichverticaldistancesaredeterminedbytacheometryusingengineer’stransitandlevelrod;plane-tableandalidadeandlevelrod;orself-reducingtacheometerandlevelrod.(視距高程測量,利用視距測量,使用工程經緯儀和水準尺;平板儀和照準儀和水準尺;或者自處理視距儀和水準尺測得垂直距離)4.Barometricleveling,bymeasuringthedifferencesinatmosphericpressureatvariousstationsbymeansofabarometer.(氣壓水準測量,通過使用氣壓計測量不同站點大氣壓力的差值來測高程)5.Gravimetricleveling,bymeasuringthedifferencesingravityatvariousstationsbymeansofagravimeterforgeodeticpurposes.(重力水準測量,通過使用重力計測量不同站點的重力值差值來測高程,用于大地測量學的目的)6.Inertialpositioningsystem,inwhichaninertialplatformhastreemutuallyperpendicularaxes,oneofwhichis“up”,sothatthesystemyieldselevationasoneoftheoutputs.(慣性定位系統,含有一個慣性平臺,具有三個互相垂直軸,其中一個是“向上”的,所以這個系統產生的輸出其中一個就是高程。)Verticalaccuraciesfrom15to50cmindistancesof60and100km,respectively,havebeenreported.(各自地,據相關報告,在60和100km的距離上,其精度能達到15到50cm)Theequipmentcostisextremelyhighandapplicationsarerestrictedtoverylargeprojectswhereterrain,weather,time,andaccessimposespecialconstraintsontraditionalmethods.(這種裝置成本極只限于高,非常大的項目,這些項目地質、氣象、授時、以及??施加特殊限制在傳統方法上)7.GPSsurveyelevationsarereferencedtotheellipsoidbutcanbecorrectedtothedatumifasufficientnumberofpointswithdatumelevationsarelocatedintheregionsurveyed.(GPS高程測量,它的參考面是地球橢球面,但是如果在測區有充分的高程點,可以修正至高程基準上來)Standarddeviationsinelevationdifferencesof0.053to0.094marepossibleundertheseconditions.(在這種情況下,其高差的標準差能夠達到0.053到0.094米。Spiritleveling(水準測量)Themostprecisemethodofdeterminingelevationsandmostcommonlyusemethodisdirectlevelingorspiritlevelingwhichmeansmeasuringtheverticaldistancedirectly.(精度最高、使用最普遍的高程測量方法就是直接測垂直距離的水準測量方法)Differentiallevelingisusedtodeterminedifferencesinelevationbetweenpointsthatareremotefromeachotherbyusingasurveyor’sleveltogetherwithagraduatedmeasuringrod.(微差水準測量是利用測量者的水準儀【level水準儀、水平儀】和有刻度的尺來測定遠距離的相隔點的高差)Forexample,todeterminetheelevationsofdesiredpointBwithrespecttoapointofknownelevationA(seeFigure1),theelevationofwhich(BM)isknowntobeabovesealevel,thelevelissetupatintermediatepointbetweenAandB,androdreadingsaretakenatbothlocationsasaandbrespectively.(例如,確定欲測關于點A的點B的高程,(如圖1)點的高程已知(BM點),A,在A和B點之間的中點處安置水準尺,分別以a和b代表在這兩處水準尺上的讀數)Thentheelevationofthelineofsightoftheinstrument(beinghorizontal)isknown(那么儀器(整平后)的視線高程就是:HA+a)TheelevationofpointBcanbedeterminedbyequation(B點的高程可以由方程來確定)HB=HA+a-bInadditiontodeterminingtheelevationofpointB,theelevationsofanyotherpoints,lowerthanthelineofsightandvisiblefromthelevel,canbedeterminedinasimilarmanner.(除確定B點的高程之外,其它點的高程,低于視線的和水準儀可以看見的點,都可以以相似的方法得到。)Butsometermsshouldbementionedfromabove.(但是上面的一些術語需要提一下)aiscalledBacksight(BS)whichisarodreadingtakenonapointofknownelevationinordertoestablishtheelevationoftheinstrumentlineofsight.(a被稱為Backsight,是一個放在已知高程點上的尺的讀數,用來求得儀器視線的高程。)biscalledForesight(FS)whichisarodreadingtakenonaturningpoint,benchmark,ortemporarybenchmarkinordertodetermineitselevation.(b被稱為Foresight,是一個放在轉點、水準點、或者是臨時水準點之上的尺的讀數,用來確定該點的高程)HA+areferstotheHeightofInstrument(HI)whichistheelevationofthelineofsightthroughthelevel.(HA+a指的是儀器高度(HI),是過水準儀的視線的高程)Owingtorefraction,actuallythelineofsightisslightlycurved,theeffectsofcurvatureandrefractionforthehorizontaldistancecanbereducedtoanegligibleamountandnocorrectionforcurvatureandrefractionisnecessaryifbacksightandforesightdistancesarebalancedinpracticaloperation.(由于大氣折光的緣故,實際上視線是有些彎曲的,曲率和折光的影響可以被當作可忽略的不必值,加入球氣改正,如果在實際工作中后視距和前視距是相等的)TrigonometricLeveling(三角高程測量)Trigonometriclevelingisusedwheredifficultterrain,suchasmountainousareas,precludestheuseofconventionaldifferentialleveling.(三角高程測量適用于困難地形,例如在山區,不能使用常規的微差水準測量。)Themodernapproachistomeasuretheslopedistanceandverticalangletothepointinquestion.(現代的三角高程測量方法是測量到未知點的斜距和垂直角)Slopedistanceismeasuredusingelectromagneticdistancemeasurersandthevertical(orzenith)angleusingatheodolite,orthetotalstationthatintegratethesetwoinstrumentsintoasingleinstrument.(斜距由電磁波測距儀測得,垂直角(或天頂距)由經緯儀測得,或者利用整合了這兩種儀器為一體的全站儀來測)Totalstationscontainbuilt-inmicroprocessorsthatcalculateanddisplaythehorizontaldistancefromthemeasuredslopedistanceandverticalheight.(全站儀包含了內置的微處理器,用來根據測得的斜距和垂直角計算和顯示水平距離)Thislatterfacilityhasresultedintrigonometricallevelingbeingusedforawidevarietyofheightingprocedures,includingcontouring.(這種后來的設備導致了三角高程測量被廣泛用于多種高度測量工作,包括測繪等高線ThebasicconceptoftrigonometricallevelingcanbeseenfromFigure2.(三角高程測量的基本原理可以看圖2)WhenmeasuringtheverticalangleαandthehorizontaldistanceSisused,thenthedifferenceinelevationhABbetweengroundpointsAandBistherefore:(當我們用α和S分別表示垂直角和水平距離時,A點和B點之間的高差為:)hAB=S×tanα+i–vwhereiistheverticalheightofthemeasuringcenteroftheinstrumentaboveAandvistheverticalheightofthecenterofthetargetaboveB.(i是A點上儀器中心的高度,v是B點上目標中心的垂直高度)Theverticalanglesarepositiveforanglesofelevationandnegativeforanglesofdepression.(垂直角為仰角時為正,俯角時為負)Thezenithanglesarealwayspositive,butnaturallywhengreaterthan90°theywillproduceanegativeresult.(天頂距總是正的,但是自然的當超過了90°時,它們將產生一個相反的結果)Trigonometricallevelingmethodofdeterminingdifferenceinelevationislimitedtohorizontaldistancelessthan300mwhenmoderateprecisionissufficient,andtoproportionatelyshorterdistancesashighprecisionisdesired.(普通【精度要求下,三角高程測量方法測高差水平距離不能超過300m,如果要求高的精度,則要相應縮短距離。)Forthedistancebeyond300mtheeffectsofcurvatureandrefractionmustbeconsideredandapplied.(因為超過300m時,地球曲率和折光影響必需考慮)Toeliminatetheuncertaintyinthecurvatureandrefractioncorrection,vertical-angleobservationsaremadeatbothendsofthelineascloseinpointoftimeaspossible.(為了消除地球曲率和折光改正的不確定因素,垂直角觀測時應采用在觀測方向兩端盡量同時相向觀測的方法。對向觀測Thispairofobservationsistermedreciprocalvertical-angleobservation.(這種觀測稱為垂直角對向觀測)Thecorrectdifferenceinelevationbetweenthetwoendsofthelineisthemeanofthetwovaluescomputedbothwayseitherwithorwithouttakingintoaccountcurvatureandrefraction(線兩端正確的高程之差是計算得到的兩高程值的平均值,不管計算有無考慮球氣差.)Theimportantnotesshouldbementionedhereisthatsurveyorsusedtoworkingwithspiritlevelshavereferencedorthometricheights(H)tothe“average”surfaceoftheearth,asdepictedbyMSL.(這里需要注意的是,測量者在水準測量工作中使用的是參考地球“平均”表面的正高正高,這個平均表面描述為正高MSL)However,theelevationcoordinate(h)givenbyGPSsolutionsreferstotheheightfromthesurfaceoftheellipsoidtothegroundstation.(然而,GPS方法給出的是地球橢球面到地面站的大地高UNIT7RoboticTotalStationAlate1980sadaptionofthetotalstationistheadditionofservomotorstodriveboththehorizontalandtheverticalmotionsoftheseinstruments.(80年代末,全站儀改進【adaption改變、改寫】是加入伺服【servo】電動機【motor】,用以驅動儀器的水平和垂直移動【motion】)Forallthecomplexelectronicsinsidearobotictotalstation,themotionisstillprovidedbysimpleservomotorswithareductiongearsystem.(在智能型全站儀內所有的復雜的電子元件,它們的活動仍然是由簡單的帶有一個變速【reduction變速、減速】齒輪系統的伺服電動機提供的)Theendresultmustbelightweight,durableandfastandhavesub-secondpositioningaccuracy.(最終結果必定是,質量輕【原文應該是lightweight,中間有空格;lightweight的意思是輕量級選手、不勝任者】,耐用的和快速的、有著亞秒級定位精度的)

Whenthosetotalstationshavebeendesignedwithautomatictargetrecognition(ATR)function,theyallowtheusertoautomaticallytrack,measureandrecordtargets.(當帶有自動目標識別功能【automatictargetrecognition】的全站儀被設計出后,自動跟蹤【track】、測量和記錄目標得以實現。)Currenttechnologyprovidesrobotic(motorized)totalstationsthatareabletomeasureangleswithanaccuracyof±0.5″anddistanceswithanaccuracyof±1mm+1ppmtoarangeof3500m.(當前的技術能夠使智能型全站儀在3500m的范圍內的測角精度達到±0.5″,測距精度達到±1mm+1ppm)Latestmodelsarecapableofsearchingautomaticallyfortargetsandthenlockingontothemprecisely,turninganglesautomaticallytodesignatedpointsusingtheuploadedcoordinatesofthosepoints,repeatinganglesbyautomaticallydouble-centering,andevenequippedwithautomaticdatatransfersystems.(最近的樣式可以自動搜尋目標并將其精確鎖定,自動轉角到指定【designated】點——利用上載的【uploaded】這些點的坐標,通過自動兩次置中復測角度,甚至裝備了自動數據轉換系統)Theseinstruments,whencombinedwitharemotecontrollerheldbytheprismsurveyor,enablethesurveytoproceedwithareducedneedforpersonnel.(這種儀器,當與一個可被持鏡【prism棱鏡】測量者持有的遙控裝置【remotecontroller遙控裝置】結合后,測量工作就可以減少人員【personnel人員n.】的需要)Allthesecharacteristicsmaketherobotictotalstationsveryusefulforgeomaticsengineeringtasks.(所有這些特性使得智能型全站儀在測繪工程任務當中非常有用)

UsingarobotictotalstationwithATR,first,thetelescopemustbepointedroughlyatthetargetprism—eithermanuallyorundersoftwarecontrol—andthentheinstrumentdoestherest.(使用帶有ATR的智能型全站儀時,首先,望遠鏡必需大致地【roughly粗略地】照準目標棱鏡——或者手工【manually用手adv.】或者軟件控制——然后省下的就交給儀器去做了)TheATRmoduleisadigitalcamerathatnotestheoffsetofthereflectedlaserbeam,permittingtheinstrumentthentomoveautomaticallyuntilthecrosshairshaveelectronicallysetonthepointprecisely.(ATR模塊是一個數字照相機,可以記錄【note】反射激光束的偏移量【offset】,使得【permit使……有可能】儀器能夠自動移動【轉動】,直至十字絲電子的調整到正好【precisely】照準那個點)Afterthepointhasbeenprecisely“sighted”,theinstrumentcanthenreadandrecordtheangleanddistance.(當該點被正好“看到”,儀器就可以讀出并記錄角度和距離)Reportsindicatethatthetimerequiredthisprocessisonlyone-thirdtoone-halfofthetimerequiredtoobtainthesameresultsbyconventionaltotalstationtechniques.(有報告指出【indicate】,該過程所需時間僅是使用常規【conventional常規的、傳統的】全站儀獲得同樣結果所需時間的一半或三分之一)UNIT8ErrorsinMeasurementMeasurementsaredefinedasobservationsmadetodetermineunknownquantities.(測量被定義為確定未知量【quantity】的觀測)Theymaybeclassifiedaseitherdirectorindirect.(它們可以被分為直接觀測和間接觀測)Adirectmeasurementisonewherethereadingobservedrepresentsthequantitymeasured,withoutaneedtoadd,takeaveragesorusegeometricformulastocomputethevaluedesired.(直接觀測就是觀測讀數即代表了【represent代表、描述】測量量,不需要另外加、取平均或利用幾何【geometric幾何的】公式【formulas】來計算出所需【desired想得到的】值。)Determiningthedistancebetweentwopointsbymakingadirectmeasurementusingagraduatedtapeisanexampleofdirectmeasurement.(用一把刻度尺直接確定兩點之間的距離,就是一個直接觀測的例子)Anindirectmeasurementrequirescalculationandcanbedeterminedfromitsmathematicalrelationshiptodirectmeasurementswhenitisnotpossibleorpracticaltomakedirectmeasurements.(間接觀測需要計算,當直接觀測是不可能或不實際【practical實際的】時,可以利用它與直接觀測量之間的數學關系來確定。)Forexample,stationcoordinatescanbemathematicallycomputedbymeasuringanglesandlengthsoflinesbetweenpointsdirectly.(例如,測點【station測點】坐標可以由直接測得的點之間直線的角度和長度來計算)Thereforetheindirectmeasurements(computedstationcoordinates)containerrorsthatwerepresentintheoriginaldirectobservationsandpropagated(distributed)bythecomputationalprocess.(因此,這個間接測量值(計算出的測點坐標)包含了初始【original】直接觀測出現【present】的和由計算過程傳播【propagate】(散播的)的誤差。)【that后面全都是修飾errors的】Thisdistributionoferrorsisknownaserrorpropagation.(這種誤差的散播被認為【beknownas被稱為】誤差傳播)Also,itistheindirectnatureofmeasurementsthatforcestheneedtooftenapplysomerathersophisticatedmathematicalprocedurestoanalysisoferrorsandthusdeterminea“bestvalue”torepresentthesizeofthequantity.(同樣,間接測量的特性需要【forcestheneedto使……成為需要】經常應用一些更復雜的數學方法【procedure】來分析誤差并從而確定“最佳值”來代替【represent代替、代表、扮演、表現】測量值的大小)2.SystematicErrors.(系統誤差)SystematicErrorsaredefinedasthoseerrorswhosemagnitudeandalgebraicsigncanbecalculatedandappliedasacorrectiontothemeasuredquantity,ortheseerrorsfollowsomephysicallawandthuscanbepredicted.(系統誤差定義為,大小【magnitude】和符號【algebraicsign代數符號】上可以被計算,并當作修正值應用在測量量上,或者說這些誤差遵循某些自然法則【physicallaw】因而可以被預知【predicte】)Somesystematicerrorsareremovedbysomecorrectmeasurementprocedures(e.g.,balancingbacksightandforesightdistancesindifferentiallevelingtocompensateforearthcurvatureandrefraction).(有些系統誤差可以由某些恰當的測量程序來消除(舉例來說【e.g.舉例來說】,在微差水準測量中使前后視距相等來低償【compensate】地球曲率和折光)Othersareremovedbyderivingcorrectionsbasedonthephysicalconditionsthatwereresponsiblefortheircreation(e.g.,applyingacomputedcorrectionforearthcurvatureandrefractiononatrigonometriclevelingobservation).(有些【others和some對比使用時,是“有些”的意思而不是做“其他”講】系統誤差則是利用推出【derive得來、得出、推出】改正值來消除,【basedon后面是講改正值怎么得到】改正值是基于它們產生的原因的物理條件推出)

Surveyorsshouldknowhowtodealwithsystematicerrors.(測量者應該知道怎樣處理體統誤差)Thefirstrequirementistorecognizeandacceptthepossibleexistenceoferrors.(第一個要求是認可并承認誤差的存在可能性)Next,identifythevarioussourcesthatmightbeaffectingareadingsystematically,then,determinewhatthe“system”is.(接下來,辨別可能系統地影響到讀數的不同的來源,然后確定這個“系統”是什么【是什么在系統的影響讀數】。)Isitaconstant,linear,orinproportiontothesizeofthequantitybeingmeasured?Or,doesitfollowsomeothermathematicalrelationship?Istheresomephysicsinvolved?(它是常量【constant】?是線性的【linear】?還是和被測量的大小成比例【inproportionto】?還是,它遵循其它一些數學關系?和物理過程有關嗎?)Oncesystematicerrorsdiscoveredandquantified,theerrorscanbeessentiallycompensatedbycertainprocessesofmeasuringorcorrectedtoreducetheireffect.(一旦系統誤差被發現和量化【quantify】,誤差就可以得到實質的【essentially實質地】低償,【by后面是低償的方法】利用某一【certain某一個】測量過程或者修正來減少它們的影響)Carefulcalibrationofallinstrumentsisanessentialpartofcontrollingsystematicerrors.(儀器的仔細的校準【calibration校準n.】,是控制系統誤差的本質的一方面)3.RandomErrors.(隨即誤差)Random(alsoknownasaccident)errorsareintroducedintoeachmeasurementmainlybecauseofhumanandinstrumentimperfectionsaswellasuncertaintiesindeterminingtheeffectsoftheenvironmentonmeasurements.(隨機(也叫偶然)誤差引入每個測量工作中,主要因為人和儀器的不完美性,如同環境對測量工作的影響的不確定性)Afterallmistakesandsystematicerrorshavebeenremovedfromthemeasuredvalues,therandomerrorsremain.(在所有的錯誤和系統誤差被移除出測量值后,剩下的就是隨機誤差)Ingeneral,randomerrorsareunavoidableandrelativelysmall.(通常【Ingeneral】,隨即誤差是不可避免的并且相對較小)Theyusuallydonotfollowanyphysicallaw,butfollowrandompatterns,orthelawsof“chance”.(它們通常并不遵循任何物理法則,但卻遵循隨機模式【pattern模式、式樣】,或概率法則)Theyhaveunknownsignsandareaslikelytobenegativeorpositive.(它們符號不可知,可能是正或是負)Themagnitudeofsuchanerrorisunknown,butitcanbedealtwithandestimatedaccordingtothemathematicallawsofprobability.(這樣的【such】誤差的大小【magnitude】未知,但是可以依照【accordingto】數學的概率論【lawsofprobability概率論】來處理和估計【estimate】)Examplesofrandomerrorsare(a)imperfectcenteringoveragroundpointduringdistancemeasurementwithanEDMinstrument,(b)bubblenotcenteredattheinstantalevelrodisread,and(c)smallerrorsinreadinggraduatedscales.(隨機誤差的例子如(a)在使用EDM測距時沒有完全【imperfect有缺點的、未完成的】對中地面點,(b)在水準尺上讀數時【attheinstant在……時】氣泡沒有居中(c)讀刻度尺時的小誤差)Unit9BasicStatisticalAnalysisofRandomErrors(隨機誤差的統計學基本分析)Randomerrorsarethosevariablesthatremainaftermistakesaredetectedandeliminatedandallsystematicerrorshavebeenremovedorcorrectedfromthemeasuredvalues.(隨機誤差是在錯誤被察覺【detect】和消除【eliminate】后,并且所有系統誤差被從測量值中移除或修正后,保留下的那些變量【variable變量、變化n.】)Theyarebeyondthecontroloftheobserver.(它們是觀測者無法控制的)Sotherandomerrorsareerrorstheoccurrenceofwhichdoesnotfollowadeterministicpattern.(因此隨機誤差是不遵循某個確定性【deterministic確定性的】模式【pattern】而發生的誤差)Inmathematicalstatistics,theyareconsideredasstochasticvariables,anddespitetheirirregularbehavior,thestudyofrandomerrorsinanywell-conductedmeasuringprocessorexperimenthasindicatedthatrandomerrorsfollowthefollowingempiricalrules:(在數理統計【mathematicalstatistics】中,它們被當成隨機變量【stochasticvariable】,盡管它們的行為無規律,在任一正確的【well-conducted原意為品行端正的,這里指測量實驗和活動是無誤的】測量活動和實驗中,對的隨機誤差的研究顯示【indicate】隨機誤差遵循以下經驗法則【empiricalrule】:)=1\*GB2⑴Arandomerrorwillnotexceedacertainamount.(隨即誤差不會超過一個確定的值)=2\*GB2⑵Positiveandnegativerandomerrorsmayoccuratthesamefrequency.(正負誤差出現的頻率相同)=3\*GB2⑶Errorsthataresmallinmagnitudearemorelikelytooccurthanthosethatarelargerinmagnitude.(誤差數值【magnitude量值、大小】小的比數值大的誤差出現可能性大【belikelyto可能】)=4\*GB2⑷Themeanofrandomerrorstendstozeroasthesamplesizetendstoinfinite.(當【as】樣本大小【samplesize】趨近于無窮【infinite】時,隨機誤差的平均值趨近于0)Inmathematicalstatistics,randomerrorsfollowstatisticalbehaviorallawssuchasthelawsofprobability.(在數理統計中,隨機誤差遵循統計學的【statistical】行為【behavioral行為的】規律,如概率法則)Acharacteristictheoreticalpatternoferrordistributionoccursuponanalysisofalargenumberofrepeatedmeasurementsofaquantity,whichconformtonormalorGaussiandistribution.(發生在一個量的大量重復觀測分析【analysisn.】中的誤差分布的一個特征理論模式,遵照【conformto遵照】正態或高斯分布)【在對一個量進行大量重復觀測分析后,得到一個誤差分布的理論特征——正態或高斯分布】Theplotoferrorsizesversusprobabilitieswouldapproachasmoothcurveofthecharacteristicbell-shape.(誤差大小與【versus與、與……的關系、與……相對】概率的關系圖,接近一條光滑的特有的【characteristic特有的】鐘形曲線。)Thiscurveisknownasthenormalerrordistributioncurve.(這條曲線被稱為正態分布曲線)Itisalsocalledtheprobabilitydensityfunctionofanormalrandomvariable.(也叫做正態隨機變量【normalrandomvariable】的概率密度【probabilitydensity】函數)Itisimportanttonoticethatthetotalareaoftheverticalbarsforeachplotequals1.(需特別注意的是,每個圖的條形圖總面積為1。)Thisistruenomatterthevalueofn(thenumberofsinglecombinedmeasurements),andthustheareaunderthesmoothnormalerrordistributioncurveisequalto1.(無論【nomatter】n(單一的聯合的測量數目【獨立觀測數】)是多少,在光滑的誤差正態分布曲線下的面積都是1。)Ifaneventhasaprobabilityof1,itiscertaintooccur,andthereforetheareaunderthecurverepresentsthesumofalltheprobabilitiesoftheoccurrenceoferrors.(如果一件事的概率為1,它一定會發生,因此曲線下方的面積代表了所有誤差發生的概率。)Anumberofpropertiesthatrelatearandomvariableanditsprobabilitydensityfunctionareusefulinourunderstandingofitsbehavior.(有許多工具【property】與隨機變量和它的概率密度函數有關,有助于我們理解它的行為)Meanandstandarddeviationaretwomostpopularstatisticalpropertiesofarandomvariable.(平均值和標準偏差就是兩個最常用的隨機變量的統計工具【property】)Generally,arandomvariablewhichisnormallydistributedwithameanandstandarddeviationcanbewritteninsymbolformasN(μ,σ2).(一般地,一個通常由平均值和標準偏差描述的隨機變量可以用符號【symbol】表示為N(μ,σ2)。Theycanbeexplainedasfollows.(【它們可以】解釋如下)Mean:Themostcommonlyusedmeasureofcentraltendencyisthemeanofasetofdata(asample).(平均值:最普遍應用的中心趨向的估計【measure】就是一系列數據(一個樣本)的平均值)Theconceptofmeanreferstothemostprobablevalueoftherandomvariable.(平均值的概念【concept】涉及到隨機變量的最或是值)Itisalsocalledbyanyoftheseveralterms—expectation,expectedvalue,meanoraverage.(還可以由其它幾個術語來稱呼它——期望、預期值、平均值或平均值)Themeanisdefinedas(平均值定義為)Wherexiaretheobservations,nisthesamplesize,ortotalnumberofobservationsinthesample,andxisthemeanwhichisalsocalledmostprobablevalue(MPV).(xi是觀測值,n是樣本大小,或者叫樣本內觀測值的總數,x是平均值,經常被稱為最或是值(MPV)TheMPVistheclosestapproximationtothetruevaluethatcanbeeasilyachievedfromasetofdata.(MPV是最接近真值的近似值【approximation】,可以很容易由一系列數據得到。)Itcanbeshownthatthearithmeticmeanofasetofindependentobservationsisanunbiasedestimateofthemeanμofthepopulation.(可以看出【Itcanbeshownthat】一系列獨立【independent】觀測值的算數平均值【arithmeticmean】是一個樣本【population】的期望值μ的無偏估計【unbiasedestimate】。)Standarddeviationisanumericalvalueindicatingtheamountofvariationaboutacentralvalue.(標準偏差是一個數值【numericalvalue】,指示【indicate】相對于中值的偏離)Inordertoappreciatetheconceptuponwhichindices【index的復數】ofprecisiondevolveonemustconsiderameasurethattakesintoaccountallthevaluesinasetofdata.(考慮一系列數據的所有值精度指標必需顧及一個量,這個量考慮到【takesintoaccount考慮】一組【asetof】數據的所有值)Suchameasureisthedeviationfromthemeanxofeachobservedvaluexii.e.(xi-x),andthemeanofthesquaresofthedeviationsmaybeused,andthisiscalledthevarianceσ2,(這個量是每個觀測值xi相對于平均值x的離差【deviation】,也就是,(xi-x),離差的平方的平均值被采用,稱之為方差σ2)Whereμisthemean(expectation)ofthepopulation.(這里μ是對象總體【樣本】的平均值(期望值)。)Thesquarerootofthevarianceiscalledstandarddeviationσ.(方差的平方根被稱為標準差σ)Theoreticallythestandarddeviation,whichisthevalueontheXaxisoftheprobabilitycurvethatoccursatthepointsofinflecxion【估計應為inflexions拐點】ofthecurve,isobtainedfromaninfinitenumberofvariablesknownasthepopulation.(理論上標準差,是概率曲線拐點的X軸坐標,由無窮多的變量(被稱為樣本)得到)Inpractice,however,onlyasampleofvariablesisavailableandSisusedasanunbiasedestimator.(然而,實際上,只有變量的樣本是可以利用的,S被稱為無偏【unbiased】估計【estimator估計、估計者】。)Accountistakenofthesmallnumberofvariablesinthesamplebyusing(n-1)asthedivisor,whichisreferredtoinstatisticsastheBesselcorrection;hence,varianceis(樣本中有限的【small小的】變量的計算,用n-1作為除數【divisor除數、約數】,在統計學中稱之為白塞爾修正;因此,變化【variance變化、不一致n.】如下:)Toobtainanindexofprecisioninthesameunitsastheoriginaldata,thereforethesquarerootofthevarianceisused,andthisalsocalledthestandarddeviationS.(為了獲得與源數據一樣單位的精度指標,方差的平方根被采用,又叫做標準差S)Thestandarddeviationisthemeasureofthedispersionorspreadoftherandomvariable.(標準差是隨機變量的離差或離散的量度標準。)Asurveymeasurement,suchasadistanceorangle,aftermistakesareeliminatedandsystematicerrorscorrected,isarandomvariable.(一個測量值,例如距離或角度,在錯誤被去除、系統誤差被修正后,就是一個隨機變量。)Ifadistanceismeasured20times,itisnotunusualtogetvaluesforeachofthemeasurementsthatdifferslightlyfromitstruevaluethatisneverknown.(如果一段距離被測了20次,每次的測量值與永遠未知的真值有些微的差值是很正常的)Soowingtorandomvariability,anerrorwasdefinedasthedifferencebetweenarandomvariable,themeasuredvalue(observation)andtheconstant,thetruevaluei.e.error=measuredvalue.(因此,由于【owingto】隨機可變性,誤差被定義為隨機變量、測量值和常量之間的差值,也就是,誤差=測量值【-常量,這里估計是掉了】。)Andacorrection(residual),whichisthenegativeoftheerrorinpractice,wasdefinedascorrectionbetweentheMPVandmeasuredvaluei.e.correction=MPV-measuredvalue.(改正值,習慣上【inpractice】是誤差的負值,定義為MPV和測量值之間的修正值,也就是改正值=MPV-測量值)Whentheso-calledtruevaluesareavailabletocomparewithcalculatedvalues,themeansquareerror(MSE)isgivenby(當所謂的真值可以與計算值相比較時,誤差均方差(MSE)為:)Inwhichxiisthemeasuredvalue,xisthetruevalueandnisthenumberofmeasurements.(其中xi是測量值,x是真值,n是觀測數)Propagationoferrors(orerrorpropagation):Muchdatainsurveyingisobtainedindirectlyfromvariouscombinationsofobservations.(誤差傳播:測量的許多數據是間接由各種測量值綜合得到的【combination是名詞,這里翻譯時用到了詞性轉換】)Forinstancethecoordinatesofalineareafunctionofitslengthandbearing.(例如,一條直線的坐標就是其長度和方位的函數)Aseachmeasurementcontainsanerror,itisnecessarytoconsiderthecombinedeffectoftheseerrorsonthederivedquantity.(由于每項測量值都包含誤差,必需考慮這些源數據的誤差的聯合影響)Errorpropagationisoneofthemanyaspectsofanalyzingerrors.(誤差傳播是誤差分析的許多方面的其中一個)Itisthemathematicalprocessusedtoestimatetheexpectedrandomerrorinacomputedorindirectlymeasuredquantitycausedbyoneormoreidentifiedandestimatedrandomerrorsinoneormoreidentifiedvariablesthatinfluencetheprecisionofthequantity.(它是一個數學方法【process或者譯為過程】,用來估計【estimate】在一個計算出的或間接測量的參量【quantity】中的期望隨機誤差【或偶然誤差】,該參量是在一個或多個確定的【identified】變量中由一個或多個限定或確定的偶然誤差引起的,影響該量的精度。)Thegeneralprocedureistodifferentiatewithrespecttoeachoftheobservedquantitiesinturnandsumthemtoobtaintheirtotaleffect.(一般的程序是取每個觀測量的微分【differentiate求……微分】然后把它們加起來,來獲得它們的總的影響)ThusifZ=f(x1,x2,…,xn),andeachindependentvariablechangesbyasmallamount(anerror)Δx1,Δx2,…Δxn,thenZwillchangebyasmallamountequaltoΔZ,obtainedfromthefollowingexpression:(這樣,如果Z=f(x1,x2,…,xn),每個獨立變量用一個小的量(誤差)代換Δx1,Δx2,…Δxn,Z由一個小的量ΔZ代換,ΔZ由下面表達式得到:)inwhichisthepartialderivativeofZwithrespecttox,etc.(其中是Z對x的偏導數【partialderivative】,等等)Δisusedtoreplacethepartialsymbold.(Δ用來替代偏導符號d)Astheobservationsareconsideredindependentanduncorrelated,thevarianceσ2Zistherefore(假設觀測值是獨立和不相關的,方差σ2Z為:)whichisthegeneralequationforthevarianceofanyfunctionwhichiscalledtherationaleofErrorPropagation.(是任意函授的方差【variance】計算的普適方程,被稱為誤差傳播【ErrorPropagation】定律【rationale基本原理】)Thisequationisveryimportantandisusedextensivelyinsurveyingforerroranalysis.(這個方程非常重要,在測量中廣泛應用于誤差分析)Unit10AccuracyandPrecision(準確度和精度)Canyoumakeameasurementthat’sveryprecise,butnotveryaccurate?(你能進行一項精度非常高,卻不怎么準確的測量嗎)Cananumberbeaccurate,butnotveryprecise?(一個量可以正確卻不怎么精確嗎)Let’sfindoutthedifferencebetweenthesetwoterms;you’llseethatprecisionandaccuracyarereallytwodifferentthings.(讓我們來找出這兩個術語的不同;你將會看到精度和準確度確實是兩個不同的概念)Ameasurementcanbeprecisebutinaccurate,aswellasaccuratebutimprecise.(一個測量量可以是精確的但不準確,也可以是準確的但不精確。)Forexample,ifameasurementwasmadewithmuchcareusingahighlyrefinedinstrument,repeatedreadingsofthesamequantitywouldagreecloselyandthusprecisionwouldexist.(例如,如果一個測量量由仔細的利用高精密的【highlyrefined】儀器,對一個數重復讀數得來,它們將非常一致,精度就存在了)Butiftheinstrumentcontainedoneormoreundetected,uncorrectedsystematicerrors,theresultswouldbein

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論