




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年人教B版高一數學下冊月考試卷470考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共6題,共12分)1、設a>0,將表示成分數指數冪;其結果是()
A.
B.
C.
D.
2、【題文】已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},則M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}3、【題文】已知函數在區間上是增函數,則的范圍是A.B.C.D.4、【題文】設全集集合則=()A.B.C.D.5、執行如圖的程序框圖,若輸人a=319,b=87;則輸出的a是()
A.19B.29C.57D.766、設x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥∥則|+|=()A.B.C.2D.10評卷人得分二、填空題(共8題,共16分)7、把正整數1;2,3,4,5,,按如下規律排列:
。123456789101112131415按次規律,可知第n行有____個正整數.8、已知函數y=loga(x-b)的圖象如圖所示,則ab=____.9、已知則f(x)=____.10、有一道解三角形的題因紙張破損,有一條件不清,且具體如下:在△ABC中,已知B=,求角A.經推斷破損處的條件為三角形一邊的長度,且答案提示A=請將條件補完整.11、對于任給的實數直線都通過一定點,則該定點坐標為.12、【題文】求值:=____.13、設m;n是兩條不同的直線;α,β,γ是三個不同的平面,給出下列四個命題:
①若m⊥α;n∥α,則m⊥n;
②若α⊥γ;β⊥γ,α∩β=m,則m⊥γ;
③若m∥α;n?α,則m∥n;
④若α⊥β;α∩β=n,m⊥n,則m⊥β
其中正確命題的序號是______.14、在某程序框圖如圖所示,當輸入50
時,則該程序運算后輸出的結果是______.
評卷人得分三、證明題(共9題,共18分)15、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.16、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.17、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據如圖,設計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.18、如圖,設△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.19、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.20、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.21、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.22、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點;
(2)若CF=3,DE?EF=,求EF的長.23、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.評卷人得分四、作圖題(共4題,共40分)24、如圖A、B兩個村子在河CD的同側,A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設管道的費用最省,并求出其費用.25、作出函數y=的圖象.26、畫出計算1++++的程序框圖.27、繪制以下算法對應的程序框圖:
第一步;輸入變量x;
第二步,根據函數f(x)=
對變量y賦值;使y=f(x);
第三步,輸出變量y的值.評卷人得分五、綜合題(共1題,共8分)28、已知開口向上的拋物線y=ax2+bx+c與x軸交于A(-3;0);B(1,0)兩點,與y軸交于C點,∠ACB不小于90°.
(1)求點C的坐標(用含a的代數式表示);
(2)求系數a的取值范圍;
(3)設拋物線的頂點為D;求△BCD中CD邊上的高h的最大值.
(4)設E,當∠ACB=90°,在線段AC上是否存在點F,使得直線EF將△ABC的面積平分?若存在,求出點F的坐標;若不存在,說明理由.參考答案一、選擇題(共6題,共12分)1、C【分析】
由題意=
故選C.
【解析】【答案】由根式與分數指數冪的互化規則則所給的根式化簡即可將其表示成分數指數冪;求得其結果選出正確選項.
2、A【分析】【解析】因為集合M={x|(x-1)2<4,x∈R}=N={-1,0,1,2,3},所以M∩N={0,1,2},故選A.
【考點定位】本小題主要結合一元二次不等式,考查集合的運算(交集),屬容易題,掌握一元二次不等式的解法與集合的基本運算是解答好本類題目的關鍵.【解析】【答案】A3、A【分析】【解析】
試題分析:因為函數在區間上是增函數,而其函數的對稱軸為x=那么可知,區間故有選A.
考點:本試題主要考查了一元二次函數的單調性的運用。
點評:解決該試題的關鍵是理解題目中給出的區間是二次函數單調增區間的子區間的關系即可,那么求解對稱軸,得到不等式。【解析】【答案】A4、B【分析】【解析】因為設全集集合則=選B【解析】【答案】B5、B【分析】【解答】解:第一次執行循環體后:c=58,a=87,b=58;不滿足退出循環的條件;
第二次執行循環體后:c=29,a=58,b=29;不滿足退出循環的條件;
第三次執行循環體后:c=0,a=29,b=0;滿足退出循環的條件;
故輸出的a值為29;
故選:B
【分析】由已知中的程序框圖可知:該程序的功能是利用循環結構計算并輸出變量a的值,模擬程序的運行過程,分析循環中各變量值的變化情況,可得答案.6、B【分析】【解答】解:∵且∴x?2+1?(﹣4)=0,解得x=2.
又∵且
∴1?(﹣4)=y?2;解之得y=﹣2;
由此可得
∴=(3;﹣1);
可得|+|==.
故選:B
【分析】由向量平行與垂直的充要條件建立關于x、y的等式,解出x、y的值求出向量的坐標,從而得到向量的坐標,再由向量模的公式加以計算,可得答案.二、填空題(共8題,共16分)7、略
【分析】【分析】觀察已知排列的數,依次正整數的個數是,1,2,4,8,,分析得出是規律,根據規律求出第n行的正整數個數.【解析】【解答】解:由已知得出每行的正整數的個數是1;2,4,8,,其規律:
1=21-1;
2=22-1;
4=23-1;
8=24-1;
由此得出第n行的正整數個數為:2n-1.
故答案為:2n-1.8、略
【分析】
由圖象可知:即解得
∴=(3-1)-3=33=27.
故答案為27.
【解析】【答案】由圖象的特殊點即可得出代入解出即可.
9、略
【分析】
∵①
∴②
①×2-②得:
3f(x)=4x-+1
∴f(x)=
故答案為:
【解析】【答案】根據已知中我們用替換x后可得構造方程組;進而利用加減消元法,可得答案.
10、略
【分析】試題分析:由正弦定理得:或者先由三角形的內角和定理得到C=75再用正弦定理得故條件可能為:考點:解三角形.【解析】【答案】11、略
【分析】試題分析:將原式整理為不過為何值,必過直線的交點,解得:所以定點坐標為考點:過定點直線【解析】【答案】12、略
【分析】【解析】解:因為【解析】【答案】113、略
【分析】解:對于①;因為n∥α,所以經過n作平面β,使β∩α=l,可得n∥l;
又因為m⊥α;l?α,所以m⊥l,結合n∥l得m⊥n.由此可得①是真命題;
對于②;因為α,β垂直于同一個平面γ,故α,β的交線一定垂直于γ,是真命題;
對于③;m∥α,n?α,則m∥n或異面,是假命題;
對于④;若α⊥β,α∩β=n,m⊥n,m?α,則m⊥β,是假命題.
故答案為:①②.
根據線面平行性質定理;結合線面垂直的定義,可得①是真命題;
根據如果兩個平面都垂直于同一個平面;則這兩個平面的交線一定垂直于第三個平面進行判斷②是真命題;
③④列舉反例即可.
本題給出關于空間線面位置關系的命題,要我們找出其中的真命題,著重考查了線面平行、面面平行的性質和線面垂直、面面垂直的判定與性質等知識,屬于中檔題.【解析】①②14、略
【分析】解:由程序框圖知:第一次循環S=1i=2
第二次循環S=2隆脕1+2=4i=3
第三次循環S=2隆脕4+3=11i=4
第四次循環S=2隆脕11+4=26i=5
第五次循環S=2隆脕26+5=57i=6
滿足條件S>50
跳出循環體,輸出i=6
.
故答案為:6
.
根據框圖的流程模擬運行程序,直到滿足條件S>50
跳出循環體,確定輸出的i
的值.
本題考查了直到型循環結構的程序框圖,根據框圖的流程模擬運行程序是解答此類問題的常用方法.【解析】6
三、證明題(共9題,共18分)15、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據切線的性質得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結論;
(2)根據三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.16、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據三角形的外角性質推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.17、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據S△ABC=S△ABD+S△ACD列式,然后根據正弦與余弦的定義分別把BD、AD、CD,AB,AC轉化為三角形函數,代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.18、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.19、略
【分析】【分析】構造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.20、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發現∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現;首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.21、略
【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據平行線分線段成比例的性質和逆定理可得CF∥BE,根據平行四邊形的判定和性質即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.22、略
【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點.
(2)解:連CE;則∠AEC=90°,設圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=23、略
【分析】【分析】構造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.四、作圖題(共4題,共40分)24、略
【分析】【分析】作點A關于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設管道的費用最省.【解析】【解答】解:作點A關于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設的管道長度為OA+OB.
∵點A與點A′關于CD對稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設管道的最省費用為10000元.25、【解答】圖象如圖所示。
【分析】【分析】描點畫圖即可26、解:程序框圖如下:
【分析】【分析】根據題意,設計的程序框圖時需要分別設置一個累加變量S和一個計數變量i,以及判斷項數的判斷框.27、解:程序框圖如下:
【分析】【分析】該函數是分段函數,當x取不同范圍內的值時,函數解析式不同,因此當給出一個自變量x的值時,必須先判斷x的范圍,然后確定利用哪一段的解析式求函數值,因為函數解析式分了三段,所以判斷框需要兩個,即進行兩次判斷,于是,即可畫出相應的程序框圖.五、綜合題(共1題,共8分)28、略
【分析】【分析】(1)由拋物線y=ax2+bx+c過點A(-3;0),B(1,0),得出c與a的關系,即可得出C點坐標;
(2)利用已知得出△AOC∽△COB;進而求出OC的長度,即可得出a的取值范圍;
(3)作DG⊥y軸于點G,延長DC交x軸于點H,得出拋物線的對稱軸為x=-1,進而求出△DCG∽△HCO,得出OH=3,過B作BM⊥DH,垂足為M,即BM=h,根據h=HBsin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤;即可求出答案;
(4)連接CE,過點N作NP∥CD交y軸于P,連接EF,根據三角形的面積公式求出S△CAEF=S四邊形EFCB,根據NP∥CE,求出,設過N、P兩點的一次函數是y=kx+b,代入N、P的左邊得到方程組,求出直線NP的解析式,同理求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆省吐魯番市2025年小升初數學重難點模擬卷含解析
- 商標共享合同協議
- 2025至2031年中國離子風蛇行業投資前景及策略咨詢研究報告
- 新余學院《鍵盤》2023-2024學年第一學期期末試卷
- 2025-2030年中國PPP模式行業發展規劃及投資預測研究報告
- 2025至2031年中國立管檢查口行業投資前景及策略咨詢研究報告
- 2025-2030年中國3110kv繼電保護裝置行業市場運營動態調研與發展建議咨詢報告
- 云計算數據中心架構與技術
- 2024-2025新入職員工安全培訓考試試題附答案【培優A卷】
- 2024-2025公司安全培訓考試試題7A
- 口腔平滑肌瘤的手術治療與預后
- MOOC 孫子兵法-湖南大學 中國大學慕課答案
- 重點群體人員本年度實際工作時間表
- XX鎮衛生院基本公共衛生服務項目實施方案(2024年)
- 2024年學校家校關系糾紛應急處置預案
- 機房建設工程方案
- 初中學習經驗分享
- 麥肯錫的《問題分析與解決技巧》課件
- 職業教育技能培訓項目化
- 西裝基礎知識課件
- 提高術前準備完善率品管圈課件
評論
0/150
提交評論